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Despite the significant progress in micro and information
technologies and all the interest of the scientific community
in the Micro Aerial Vehicles (MAV), fully autonomous
micro-helicopters of the size of a small bird are still not avail-
able. The Mesicopter group at Stanford University [1] studied
the feasibility of a centimeter scale quadrotor. The group of
Prof. Nonami at Chiba University [2] achieved a 13g semi-
autonomous coaxial helicopter which is able to fly for three
minutes. Unfortunately, none of these developments combine
reasonable endurance and autonomous navigation in narrow
environments. The European project muFly [3] was born in
this context; it targets the development and implementation
of a fully autonomous micro-helicopter, with a maximum
span of 20 cm and mass of 50 g. The consortium is composed
of six partners; each one will provide a subsystem of the
entire helicopter. One of the objectives of muFly project isto
introduce low processing-power localization algorithms for
micro helicopters. However, compact and lightweight indoor-
localization sensors do not exist yet (unlike GPS for outdoor).
Thus, CSEM research center (Switzerland) who is involved
in muFly is presently designing a miniature omni-directional
camera [4], to be coupled with a laser source and used as a
360◦ triangulation-based range finder.

This sensor and the muFly platform will be available for
testing in a couple of months. Until then, the algorithms have
to be developed and validated with another sensor and on
a different flying platform. The main scope of application
for the helicopter are indoor environments which raises
constraints which are not present when flying outdoors. Due
to the absence of GPS information, the robot has to rely
on other on-board sensors. Furthermore, the accuracy of the
positioning system is an essential requirement for indoor
operations, which is characterized by a limited safety margin
(i.e. robot crossing a doorway).

In the last decade, navigation systems for autonomous
flying vehicles have received an increasing attention by
the research community. Ng and colleagues [5] developed
effective control algorithms for outdoor helicopters using
reinforcement learning techniques. Haehnelet al. [6] pro-
posed a 3D mapping technique for outdoor environments.
For indoor navigation, Tournieret al. [7] used monocular
vision in order to estimate and control the current pose of
a quadrotor. Robertset al. [8] utilized ultrasound sensors
for control a quadrotor in an indoor environment. Recently,
He et al. [9] described planning in the information space for
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Fig. 1. Our quadrotor: 1) Mikrokopter platform, 2) Hokuyo laser range
finder, 3) XSens IMU, 4) Gumstix computer

navigation planning.
In this paper, we present the setup and the algorithms

for estimating the pose of a flying vehicle within a known
environment. For validating the algorithms we use a modi-
fied Mikrokopter [10] quadrotor illustrated in Figure 1. We
equipped the quadrotor with a Hokuyo URG laser range
scanner and an low-cost MTi XSens IMU. The laser range
finder is able to measure distances up to 5.6 m with an
angular resolution of approximately0.35◦. To measure the
altitude of the vehicle with respect to the ground we deflect
several laser beams towards the ground with a mirror. The
remaining beams are used for 2D localization. The XSens
provides orientation angles with a dynamic accuracy of 2◦.
The on-board computation is performed by a PXA-based
embedded computer (Gumstix-verdex) running at 600 Mhz.
This combination of laser-scanner and IMU allows us to
simplify the localization problem by reducing the state space
from 6 to 4 dimensions, since accurate roll and pitch angles
are available from the IMU. Partitioning the remaining 4DOF
into (x, y, θ) andz, makes it possible to use the broad range
of existing algorithms for 2D (x, y, θ) wheeled mobile robot
localization.

We apply a particle filter [11] algorithm to estimate the
current pose of the vehicle. In contrast to other filtering
techniques, like Kalman Filters, particles filters are ableto
deal with highly non-linear systems and can approximate
arbitrarily complex density functions. This property includes
multi-modal pose estimation as well as global localization,
i.e., when the starting pose of the vehicle is not known in



advance. The key idea of Monte Carlo localization it to
estimate the possible robot locations using a sample-based
representation. Formally, the task consists in estimatingthe
posteriorp(xt | z1:t,u1:t) of the current robot posext given
the a known map of the environment, the odometry mea-
surementsu1:t = 〈u1, . . . ,ut〉 and the observationsz1:t =
〈z1, . . . , zt〉 made so far. In the particle filter framework, the
probability distribution about the pose of the robot at time
stept is represented by a set of weighted samples{x

[j]
t }. The

robustness and efficiency of this procedure strongly depends
on the proposal distribution that is used to sample the new
state hypotheses in the selection step. Since our flying vehicle
does not provide reliable odometry measurements, we apply
an incremental scan-matching procedure to estimate the
inter-frame motion of the vehicle.

Our algorithm can be described as follows. In a first step
we project the laser beams based on the latest roll and pitch
from the IMU. The projected beams are then divided into two
parts namely the beams for height estimation and the beams
for 2D (x, y, θ) localization. We then perform incremental
scan-matching by considering the localization beams. In this
way we get an estimate of the inter-frame motion which
is used in the prediction step of the particle filter. The
measurement update utilizes the current (projected) laser
beams and a likelihood-field map of the environment to
calculate the individual weights of the particles.

Fig. 2. In all our experiments the quadrotor autonomously kept a previously
defined height.

We tested our algorithms by remotely controlling the
quadrotor flying through our building as shown in Figure 2.
We implemented an autonomous height stabilization control
in order to test the system for different height levels. The
localization of one experiment performed at a flying height of
50 cm with 5000 particles for global localization is depicted
in Figure 3. The top image shows the initial situation in
which the current pose of the quadrotor is unknown. After
few iterations (i.e., after about1 m of flight) the localization
algorithm starts to focus on relatively few possible poses only
(middle image). After about5 m of flight, the particles are
highly focused around the true pose of the helicopter (see

bottom image of Figure 3). Note that we highlighted the
maximum a posteriori pose estimate in the three snapshots.

Fig. 3. Global localization of our quadrotor. Top: initial situation, with
uniformally drawn random poses. Middle: after about1 m of flight, the
particles start to focus on the true pose. Bottom: after approximately 5 m

of flight the particle set has focused around the true pose of the helicopter.
The blue circle highlights the current best estimate of the particle filter. The
quadrotor was able to autonomously maintain its height of50 cm during
this experiment.
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