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Zusammenfassung

Die technische Unterstitzung fiir Ersthelfer, die einerélgeichen Bereich erkunden miissen
um Verletzte zu finden und zu retten, wahrend sie selbst sg@fahrliche Bereiche vermeiden
sollen, ist jungst immer mehr in den Fokus der Forschungaieri

Eine Mdglichkeit, Ersthelfer bei ihrer Arbeit zu untergtéih, besteht darin, Roboter einzuset-
zen um fur den Menschen lebensgefahrliche Bereiche zu éadexder Verletzte zu orten.
In diesem Zusammenhang werden fliegende Roboter eine Sehtillesspielen, da sie dank
ihrer Bewegungsfreiheit iber Hindernisse hinwegfliegemledn die radbasierten Robotern den
Weg versperren wirden. Damit sie innerhalb von Gebaudges@izt werden kbnnen, missen
fliegende Roboter in der Lage sein, stationar zu verweilehdidke Voraussetzungen werden
von Quadrotoren erfillt. Leider ist es sehr zeit- und kastemsiv, einem Menschen das Ferns-
teuern solcher Quadrotoren beizubringen. Zudem bestdirend des Fernsteuerns immer ein
grol3es Risiko den Roboter zu beschadigen, da innerhalb voau@eb meist nur wenig Platz
zum Maneuvrieren ist und die Beschaffenheit der Umgeburgneschwerwiegenden Einfluss
auf die Funkverbindung haben kann. Daher muss der fliegendet&an der Lage sein Uber
einen langeren Zeitraum selbststandig zu operieren. edieFall ist nur eine minimale In-
teraktion mit einem Menschen notwendig (z.B. die Eingabendefisten Wegpunktes den der
Roboter selbststandig anfliegen soll).

Eine weitere Moglichkeit, Ersthelfer technisch zu unt@z=n, besteht darin, Sensoren in deren
Arbeitskleidung zu integrieren. Solche Sensoren kdnnbariswichtige Informationen tber
den Bereich liefern, in dem sich der Trager gerade aufhalZusammenhang mit Ersthelfern
die in einem flr sie unbekannten Geb&ude operieren, koriasa thformationen dazu verwen-
dent werden, den Menschen im Notfall zum né&chsten Ausgargitam, insbesondere dann,
wenn der Mensch beispielsweise durch Rauch oder Feuerierigmgslos ist. Weiterhin kon-
nen solche Informationen verwendet werden, um die Eiresatzs besser zu koordinieren, in-
dem beispielsweise verhindert wird, dass ein und der selbeidemehrmals abgesucht wird.

Die technischen Systeme die wir bisher beschrieben halmeki@t: Sensoren, die auf einem
Quadrotor montiert oder in die Arbeitskleidung integrigirid), mussen ihren aktuellen Zus-
tand, unter anderem ihre Position im Raum, kennen. Um diemei§®sition innerhalb eines

Gebéaudes bestimmen zu konnen ist im Allgemeinen eine Kagesgbaudes notig. Leider ist
in den meisten Fallen im Voraus keine Karte des Gebaudesnddm und das System muss
wahrend des Einsatzes selbststandig eine Karte der Umgelsiellen. Aufgrund der begren-

zten verfligbaren Rechenleistung sind effiziente Kartiesuadahren notwendig.

In dieser Arbeit entwickeln wir neue Technologien fur e#fizies Kartieren welche mit einer
Reihe von verschiedenen Sensoren verwendet werden konneiterMh entwickeln wir ein
Navigationssystem, welches einem kleinen fliegenden RoljQigadrotor) vollig autonomes



Fliegen ermdglicht. Zuletzt entwickeln wir ein Verfahramnm aus menschlichen Bewegungen
Karten von Gebauden zu erstellen. Hierbei tragt der MenswmeDatenanzug, welcher aus
einer Menge von Inertialsensoren besteht.

Im ersten Teil dieser Arbeit stellen wir neue Ansatze vor um Trajektorie eines Roboters

basierend auf seinen Messungen zu schatzen. Wir werdeaenzalgss unsere entwickelten
Verfahren genaue Resultate liefern, jedoch zum Teil um mel@edlRenordnungen schneller
arbeiten als alternative zeitgeméaR3e Verfahren. Dies diambges einem (robotischen) Sen-
sorsystem die eigene Trajektorie auf effiziente Weise zanstkuieren, was ihnen wiederum
erlaubt, genaue Karten der Umgebung zu erstellen. Die sedieleil entwickelten Verfahren

werden anschliel3end im zweiten Teil der Arbeit in den eetdpenden Navigationssystemen
eingesetzt.

Im zweiten Teil der Arbeit entwickeln wir zwei Navigationysteme fur verschiedene Sen-
sorkombinationen. Das erste System ermdglicht es einemekieQuadrotor, vollig selbst-
standig in Gebauden zu fliegen. Zu den hier entwickelten Madgehéren Positionskontrolle,
Lokalisierung, Kartierung, Pfadplanung und Hindernisveidung. Auf3erdem prasentieren wir
unser System, das dem Quadrotor erlaubt, Hindernissesiokezu kartieren. Das zweite Nav-
igationssystem verwendet Daten von menschlichen Bewegumlie mit einem Datenanzug,
bestehend aus mehreren Inertialsensoren, aufgezeichndgnv Wir entwickeln ein Verfahren
welches zuverlassig und genau die Trajektorie des Menstdresien Anzug tragt, rekonstruiert
und sowohl eine geometrische als auch eine topologischee ider Umgebung aufbaut. Das
Verfahren verwendet hierzu nur menschliche Bewegungen aradid erkannte Aktivitaten. Der
Trager des Anzugs muss daher keine zusatzlichen SensokeiKameras oder Laser Scan-
ner, tragen. Insbesondere wirden letztere in Bereichertankes Rauchentwicklung oder mit
Feuer, nicht zuverlassig funktionieren.

Obwohl wir unsere Arbeit fir den Einsatzbereich von Ergdral motiviert haben, kbnnen un-
sere entwickelten Verfahren fir eine grol3e Anzahl von \eestenen Anwendungen verwendet
werden und sind nicht auf das oben genannte Einsatzgelsiehtaamkt.



Abstract

Technical support for first responders, who have to explamatdous environments to locate
and rescue victims and thereby avoiding dangerous areasebantly gained a substantial in-
terest in the research community.

One possibility to assist first responders is by using rotao¢xplore the environment and detect
dangerous areas or locate victims. Flying robots are emasi to play a key role in this context
as their increased mobility allows them to fly over obstaatBsre wheeled robots get stuck. In
order to be able to operate indoors, the flying robot shoulaldbeto keep a stationary pose. All
these prerequisites are met by quadrotors. Unfortunaéslghing human personnel to remotely
steer such a flying platform is time intensive and costly. iliddally, manual piloting bears the
risk of damaging the robot due to the confined space indoatslaa to environmental condi-
tions that can have a severe impact on the quality of the dadko The flying robot therefore
needs to be able to operate autonomously over an extendied pétime. In this case, only
minimal input from a human (e.g., the next location the rawiuld fly to) is required.

Another possibility to support first responders is by usiags®r systems that are integrated
into their garment. Such sensors can provide vital infoiomeéibout the current location of the
wearer or an approximate map of the environment. In the goofdirst responders operating
in an unknown building, this information could be used tooate the wearer to the nearest exit
in case of emergency, especially if environmental condgitke smoke and fire elicit confusion
among first responders. Even more, this kind of informatian loe employed in a search and
rescue mission by improving the delegation of differentisai.e., by avoiding searching the
same area multiple times.

However, systems like the ones described so far (i.e., segstems mounted on a quadrotor or
integrated into the garment) need to be aware of their custate, including their own location.
To estimate the location indoors, a map of the environmeme¢égled in most cases. In general,
this map is not known beforehand and the (robotic) systerdseebuild a map of the envi-
ronment based on its sensor measurement during the migsierto the limited computational
power available, efficient mapping techniques are mangator

In this thesis we develop novel technologies for efficienppiag that can be used with a va-
riety of sensors. We furthermore develop a navigation syshat enables a small-sized flying
robot (quadrotor) to fly autonomously indoors. Finally, wevelop an approach to map indoor
environments based on human motion recorded with a data.sujtan embedded sensor sys-
tem consisting of several inertial measurement units wgrtihé human.

In the first part of this thesis, we present an innovativenegpe for estimating the trajectory of
a robot, given its observations. We will demonstrate thatgared to other state-of-the-art ap-



proaches our approach is up to several orders of magnitgtkr faithout any loss in accuracy.
This allows embedded systems to efficiently and accuragelgver their trajectory and thus al-
lows them to build accurate maps of the environment. Thiggdriramework is subsequently
used in the second part of the thesis in the corresponding@aeil sensor systems.

In the second part, we develop two navigation systems féereéifit types of sensor setups. The
first navigation system enables a small-sized quadrotoytaufonomously indoors. This in-
cludes pose control, localization, map building, patmplag, and obstacle avoidance. We also
present a novel technigue to map obstacles underneathlibe bhe second system employs
information recorded with a data suit consisting of sevieraitial measurement units worn by a
human. We develop a solution to recover the trajectory ohtirean and to build a geometrical
as well as topological map of the environment. In all casessately employ the motions and
detected activities of the human. The wearer, therefores ot need to carry any additional
sensors like cameras or laser scanners that would also metrel@bly in the case of environ-
mental conditions like smoke and fire.

Above, we motivated our work in particular envisioned fosffiresponders. However, it is
important to note that the developed technologies can bkedpp a variety of scenarios and
are not restricted to the field of search and rescue.
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Chapter 1

Introduction

First responders, (i.e., fire fighters, police men, or humarsgnnel from a technical relief
agency) in a search and rescue mission, are envisioned ¢oneeane of the key applications
of mobile robotics and embedded sensor systems. There eegtral possibilities of techni-
cal support for first responders, who have to explore a daongeznvironment (e.g., a burning
house) to locate and rescue victims while in the meantimalagohazardous areas.

One possibility to support first responders is by using flyioigots that are equipped with sev-
eral sensors and can operate over an extended period ofWitign the context of search and
rescue missions, these robots should be able to operatersidanother possibility of support

are sensor systems that are embedded into the garment aafbthehysically connected to
the human. These systems could highly improve the qualitigetiaily work. Even more, they

could protect humans by providing additional informatidroat the environment or proposing
the human a path by avoiding potential hazards in unknowir@mwents.

The goal of this thesis is to provide novel approaches thhtard humans, for example first
responders, in their daily work. We present two embeddedtiolsensor systems. A fully
autonomous indoor quadrotor (i.e., a flying robot, see Edut) and a system to map indoor
environments based on human motion obtained from a datésseitFigure 1.2).

Developing a navigation system that enables a quadrotor &amfbnomously in indoor environ-
ments is highly challenging. The reason is its limited paglahe high dynamics of this flying
platform and the confined space around the robot. Thesergaiohpose special requirements
on robustness, computational complexity, and accuracyhiiunderlying navigation system.
Similar requirements are also present in the case of a sepstam physically connected to the
human. A system that is envisioned to improve the qualitywh&an personnel or even help
saving human lives needs to be highly accurate. Since thtssyis worn by a human, the lim-
ited payload prevents the usage of heavy sensors. Even ma@ntext of search and rescue,
many sensors (e.g., cameras or lasers) will not work (rgliab the presence of environmental
conditions like smoke or fog. We therefore use for this soenaertial measurement units only.

However, both systems need an accurate estimate of theenttate. Indeed, state estimation
is said to be one of the most important prerequisites forlg swtonomous system. In the work
presented here, the state also contains the current poke afjent (i.e., robot or human) in
the environment. Since the agent has in general no infoomatbout the environment before-
hand, the system is required to construct a map of the suihogs during the mission. This
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Figure 1.1: One goal of this thesis: a navigation system enabling fulyaomous indoor flights using a small-
sized quadrotor robot. The image on the left shows a snamghbie internal state of our navigation system.
Here, the quadrotor is flying autonomously in a clutterecteffoom. The free space around the robot is seriously
confined, imposing high demands on pose stability, statmaton, and control. The image in the bottom left
shows the office room from a similar view point as the snapgbat quadrotor is shown on the right.

Wail o |
door

Figure 1.2: One goal of this thesis: a framework for mapping indoor emvwinents based on human motion and
activity detected given data from a data suit. The left imslgews the user wearing the data suit. The middle
image depicts the outcome of our approach. Based on thetidetend tracking of doors and stairs we can
estimate the most likely trajectory of the subject. More@pwes can estimate a geometrical and topological map of
the environment (middle image). Our estimated floor plameately resembles the floor plan of the same building
(rightimage). Note that we used three different colors taltfor the topological representation of the environment
for better readability.

problem is known as simultaneous localization and mapp8icgAM) and has been in focus
of research during the past decades. In our work, we focustmaging the full trajectory
of the agent given all observations, i.e., calculating aitsmh to the full SLAM problem. In
this case, we address the problem by dividing the SLAM apgra@to two parts, namely the
front-end SLAM and the back-end SLAM. The front-end is apgtion dependent and aims to
calculate the incremental trajectory of the agent. It ishflermore responsible for recognizing
previously encountered parts of the environment (also knagloop closures This type of
information can then be used by a back-end SLAM system tmaggithe most likely trajectory
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Figure 1.3: One goal of this thesis: a general framework for graph-bagéichization. Given a graph consisting of
nodes (i.e., robot poses) and edges (i.e., robot obsengatioe goal is to estimate a configuration of the nodes that
minimizes the overall error in the system and accuratelgvers the trajectory of the robot. In the example shown
above, the robot was moving on a sphere. The left image defiettrajectory of the robot given it's measured
incremental motions only. The right image shows the ressilhgiour approach where the estimated trajectory
accurately resembles the true trajectory taken by robot.

of the agent (given all sensor measurements). In this th@sisnodel the agent’s trajectory as
a graph consisting of nodes and edges. Nodes in the grapFsegpiragent positions in distinct
time steps, whereas edges between two nodes encode anatiosermade about the corre-

sponding locations. Again, these observations could beimental motion estimates as well
as a detected loop closures. Due to noisy measurements laasviieé accumulation of errors

over time, there exist in general different sensor readaigsut the same location that do not
match the current configuration. We therefore need a tedkrafyle to estimate a configuration
of the nodes that maximizes the overall observation likelthencoded by the edges. This is
also known as graph-based optimization. It is importanttie mhat the abstract representation
(i.e., nodes and edges) allows us to decouple the back-estehsyrom the overall application.

The back-end system of SLAM, however, is a computationalignsive part. Therefore, a goal
of this thesis is to develop a robust and efficient graph dptitton technique which can be
used for environment modeling (see Figure 1.3). This in withallow an agent to estimate it’s
current state. In this thesis, we will use this developeth&avork as the back-end for both the
navigation system of the flying robot and the SLAM system fapping indoor environments
based on human motion.

1.1 Contributions

With this work, we contribute to the field of robotics resdmanc several ways. We develop a
fast and accurate graph-optimization framework, that es@irthe essential parts of a mapping
system. We adapt and extend algorithms developed for wiheelots to flying ones. These
newly developed techniques allow for fully autonomous figgim indoor environments using
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a quadrotor. We present a mapping system that is able toatetuand robustly recover the
geometric structure of buildings and the subject’s trajgcgiven his movements and detected
activities only. In summary, we propose:

e a general framework to graph-based network optimizatidzDrand 3D (Chapter 4)
e a navigation system for autonomous indoor flying using a ptadrobot (Chapter 5)

e an approach to map indoor environments based on human nastbactivity (Chapter 6)

1.2 Contributions to Open-Source Software

Parts of our software have been released as open-sourcbkshig software as open-source
allows other researchers to build upon our results, evaluat approaches on different data and
platforms as well as verify our results. In more detail, wélmhed:

e TORC!. This framework implements our tree network optimizatitgoaithm. It has been
published under the Creative Commons license (Attributie@m@Bommercial-ShareAlike).
Furthermore we provided several data sets that have beehforsevaluating our ap-
proach. This framework was developed in collaboration v@ibrgio Grisetti, Cyrill
Stachniss, and Wolfram Burgard.

e The Quadrotor Navigation Systémrovides several software modules for autonomous
indoor navigation using a quadrotor flying robot and has hméished under the Cre-
ative Commons license (Attribution-NonCommercial-Shaikel Due to it's modular
design, most parts of this software can also be used forreiffgplatforms like wheeled
robots. This framework was developed in collaboration v@ibrgio Grisetti and Wol-
fram Burgard.

1.3 Publications

This thesis is based on the work published in internatianatjals and conference proceedings.
The following list of publications is given in chronologiaarder.

Journal Articles

e S. Grzonka, A. Karwath, F. Dijoux, and W. Burgard. Activitgded Estimation of Human
Trajectories. INEEE Transactions on Robotics (T-R@B(1):234-245, 2012.

e S. Grzonka, G. Grisetti, and W. Burgard. A Fully Autonomouddar Quadrotor. In
IEEE Transactions on Robotics (T-R@B(1):90-100, 2012.

e S. Bouabdallah, C. Bermes, S. Grzonka, C. Gimkiewicz, A. Breffieikdr. Hahn, D.
Schafroth, G. Grisetti, W. Burgard, and R. Siegwart. TowaralenPSize Autonomous
Helicopters. InJournal of Intelligent & Robotic Systems (IR6)1:1-27, 2011.

http://www.openslam.org/toro
2http://www.openquadrotor.org
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Conferences and Workshops

e B. Steder, M. Ruhnke, S. Grzonka, and W. Burgard. Place Recoqgriiti3D Scans
Using a Combination of Bag of Words and Point Feature basediReRdse Estimation.
In Proc. of the IEEE/RSJ International Conference on InteliigRobots and Systems
(IROS) 2011.

e S. Grzonka, B. Steder, and W. Burgard. 3D Place Recognition apetCDetection using
a Small-sized Quadrotor. Morkshop on 3D Exploration, Mapping, and Surveillance
with Aerial Robots at Robotics: Science and Systems (RSE).

e S. Grzonka, F. Dijoux, A. Karwath, and W. Burgard. Learninggdaf Indoor Environ-
ments Based on Human Activity. Bpring Symposium Series of the Association for the
Advancement of Artificial Intelligence (AAADPO10.

e S. Bouabdallah, C. Bermes, S. Grzonka, C. Gimkiewicz, A. Brefieikdr. Hahn, D.
Schafroth, G. Grisetti, W. Burgard, and R. Siegwart. TowaasPSize Autonomous He-
licopters. InProc. of the International Conference and Exhibition on Ummed Aerial
Vehicles (UAV)2010.Best conference paper award

e S. Grzonka, F. Dijoux, A. Karwath, and W. Burgard. Mappingdaod Environments
Based on Human Activity. IfProc. of the IEEE International Conference on Robotics
and Automation (ICRAR010.Finalist best student paper award Finalist best paper
award in cognitive robotics.

e S. Grzonka, G. Grisetti, and W. Burgard. Towards a Navigalgstem for Autonomous
Indoor Flying. InProc. of the IEEE International Conference on Robotics antbAua-
tion (ICRA) 2009.Best conference paper award

e S. Grzonka, G. Grisetti, and W. Burgard. Autonomous Indoaeifjation using a Small-
Size Quadrotor. IWorkshop Proc. of the International Conference on Simutat\dod-
eling and Programming for Autonomous Robots (SIMRZR)S.

e S. Grzonka, S. Bouabdallah, G. Grisetti, W. Burgard, and R.v&ey Towards a Fully
Autonomous Indoor Helicopter. Workshop of the IEEE/RSJ International Conference
on Intelligent Robots and Systems (IRCZE)08.

e B. Steder, G. Grisetti, S. Grzonka, C. Stachniss, and W. Burdastimating Consistent
Elevation Maps using Down-Looking Cameras and Inertial 8emsIn Proc. of the
Workshop on Robotic Perception at the International Comfeeeon Computer Vision
Theory and Application2008.

e G. Grisetti, S. Grzonka, C. Stachniss, P. Pfaff, and W. Burgdttficient Estimation
of Accurate Maximum Likelihood Maps in 3D. IRroc. of the IEEE/RSJ International
Conference on Intelligent Robots and Systems (IRER)7.

e B. Steder, G. Grisetti, C. Stachniss, S. Grzonka, A. Rottmama V& Burgard. Learn-
ing Maps in 3D using Attitude and Noisy Vision Sensors. Aroc. of the IEEE/RSJ
International Conference on Intelligent Robots and Syst¢RQS) 2007.
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Outside the scope of this thesis fall the following publicabns

e S. Grzonka, C. Plagemann, G. Grisetti, and W. Burgard. Lo@adlfProposals for Robust
Grid-based SLAM with Rao-Blackwellized Particle Filters. Iimernational Journal of
Robotics Research (IJRF)2:191-200, 2009.

e K. Arras, S. Grzonka, M. Luber, and W. Burgard. Efficient Peoptacking in Laser
Range Data using a Multi-Hypothesis Leg-Tracker with Adaptcclusion Probabili-
ties. InProc. of IEEE International Conference on Robotics and Awtitonm (ICRA)
2008.

e S. Grzonka, C. Plagemann, G. Grisetti, and W. Burgard. Lo@adlProposals for Ro-
bust Grid-based SLAM. IfProc. of the International Conference on Field and Service
Robotics (FSR)2007.

e K.O. Arras, B. Lau, S. Grzonka, M. Luber, O. Martinez Mozos,Nleyer-Delius, and
W. Burgard. Range-Based People Detection and Tracking foraBpdiware Service
Robots. InTowards Service Robots for Everyday Environme®{gringer STAR series,
2012.

1.4 Collaborations

Parts of this thesis are the results of collaborations wittleiopeople and we would like to thank
all the people who put hard work in the joint projects. Espligiour tree network optimization

algorithm (Chapter 4) was developed in joint work with Giargirisetti and Cyrill Stachniss.

Learning indoor maps based on human activity (Chapter 6) wiggally addressed in the

co-supervised master thesis of Frederic Dijoux and exemaeollaboration with Andreas

Karwath.

1.5 Outline

This thesis is structured as follows. We first review somedo@sithematical concepts needed
for this work in Chapter 2, in particular the notation of maticomposition and quaternions.
Subsequently, we present our developed techniques in gtemapters.

As already mentioned in the introduction, both the navayjasystem for the flying robot as
well as the SLAM system for mapping indoor environments dase human motion rely on
our graph-based optimization. This graph-based optinozad the back-end of the correspond-
ing SLAM system. We therefore first describe our developed-trased network optimizer in
Part I: Graph-Based Optimization for Efficient MappingVe start by discussing the basics
of optimization through error minimization in general aneégent the path-parametrized opti-
mization (PPO) algorithm for two-dimensional robotic maggp(Chapter 3). We then develop
a variant of PPO by introducing a novel parametrization efribdes, extend our approach to
three-dimensional error minimization in Chapter 4, and stieat our approach yields accurate
results up to several orders of magnitude faster than otat-ef-the-art approaches.

We furthermore develop two navigation systems for embedéedor systems iRart Il: State
Estimation, Navigation, and Mapping for Embedded Sensore8yswvhere our graph-based
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optimization algorithm is used as the back-end SLAM systenefficient environment model-
ing. First, we present our developed techniques enablihgdutonomous indoor flights using
a small-sized quadrotor in Chapter 5. This technologieudelposition control, multilevel
SLAM, path-planning, and obstacle avoidance. Subsequevel present a solution to map in-
door environments based on human motion and detectedtpativChapter 6. We demonstrate
that our proposed method is able to robustly and accuragebyer the trajectory taken by a sub-
ject. Furthermore, we demonstrate that we are able to bppdoximate geometrical as well
as topological maps of the environments that accurategmbte the floor plans of the building.

Finally, we recapitulate the contributions and the resofitsur work in Chapter 7, followed by
a discussion of future work.
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Chapter 2

Notation

Before describing our developed techniques in the next ensypte will first review some basic

mathematical concepts. We start by introducing the coatdisystem used in this work in the
next section. Subsequently, we briefly describe motion amitipn and spatial uncertainty in

Section 2.2, in particular the operatapsande. In Section 2.3 we will review an alternative
way to represent rotations, namely quaternions, that allagsvto easily compute intermediate
rotations by using spherical linear interpolation (slerBnally, we describe the symbols and
abbreviations used within this work in Section 2.4.

2.1 Coordinate System

Throughout this thesis we use the right-handed coordinates, i.e.,r is pointing forwards,

y is pointing to the left, and is pointing upwards as illustrated in Figure 2.1. Additithypave
describe three dimensional rotations in Euler angles, harak (¢, rotation along the:-axis),
pitch (@, rotation along the-axis), and yaw(, rotation along the-axis) and we assume each
rotation to lie within[—, 7).

Figure 2.1: We use the right-handed coordinate system within this shégérex is pointing forwardsy is headed
left, andz is pointing upwards. The Euler angles r@fl), pitch (6), and yaw(t) describe a (counter-clockwise)
rotation along the:, y, andz axis, respectively.

2.2 Motion Composition and Spatial Uncertainty

We use the notation of motion composition consisting of fherators® ("oplus") ands ("omi-
nus") as proposed by Smith and Cheeseman [138, 137]. Thesstasegeneralize the com-
position operators- and — from vectors to vectors represented in different referdrames,
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Figure 2.2: A 2D example for motion composition. L&} denote the robots position and orientation with respect
to the global reference frante,;, y,). Let furthermorel’ 5 be the transformation of the robot in the local reference
frame of Ty, i.e., given by the axes; andy;. In this case/l; denotes the pose of the robot in global reference
frame as the head-to-tail concatenatioifpiandT’ , and is calculated &6, = 71 © T} ».

in particular with respect to a rotation. Figure 2.2 showsarall example. Consider a robot
moving in 2D, i.e., a pose of the robot is represented by tloedinatesr andy and the rotation
Y (i.e., the yaw). Here, the robot starts/agtand moves to some location (which we will call
later7;). However, the robot’s sensors are only able to measureavetransformatior’ -,

in the robot’s local reference frame made of the axeandy;, whereas the starting position,
T is expressed in the global reference frame defined by theagxasdy,. The goal now is to
calculate the final location in the global reference frammeother words, givefi; and7 5, we
want to calculatd’. This kind of concatenation is also knowntasad-to-tailcomposition and
we calculatel, asTy, = 11 & T 5.

In general, however, the estimates of a spatial transfoomatare affected by noise and we
assume that this noise is Gaussian. We furthermore asswanhtéhtransformations are mu-
tually independent, i.e., the covariance between two miffetransformations is zero. In the
remainder of this section, we will describe the operato@nds in detail for the 2D case (i.e.,
x = (z,y,1)) and refer the reader to [138, 137] for a description of tHe3iD case.

Let (T;;,%;;) be an uncertain spatial relationship from node (locatiotv) node (location).
An uncertain spatial relationship consists of a transfdioné/;; (the mean of the relationship)
and the corresponding covariangg. Let furthermorel;; consist of the rotatioi?;; and the

translationt;; with

COSYP;; —SInY;,;
R = < sin:ij- COSI;iJ ) , and (2.1)
ti; = (zi,9)- (2.2)
The motion composition operatag, is then defined as
(T, Zie) == (T, Bij) ® (Tk, Bji), With (2.3)
Ty := T;; ® T}, consisting of (2.4)
Ry, = R;;Rj;, and (2.5)
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Similarly, we have

= JieXiJie + Joe ik, (2.8)
with Ji. andJ,, defined as
Lo _(yz yik)
oT; J
8_Tk —Jis = [ 01 (—zy+az4) |,and (2.9)
g 0 0 1
oT; COS Uy sint;; 0
8Tk = JQ@ = SiIl’LpZ'j COSQ/}ij 0 (210)
Ik 0 0 1
0
= R (2.11)
0 01
The inverse operatos, for a spatial transformatior{7;;, ;;) is defined as
T;, = &1, consisting of (2.13)
R; = R}, and (2.14)
Additionally, we have
= J5X;JL, with (2.17)
GT — COS ’l/}ij — SiIl wij yji
" =: J@ = sin 1/11']‘ — COS wij —Ly; (218)
0T 0 0o -1

Given the inverse operatog, for an uncertain transformatiaff;;, >;;) we can finally define
the inverse of a motion composition, i.e.,

(Tjr, Zjr) = (0(T5, Z45)) © (Tir, Zir)- (2.19)
However, we will use the more intuitive notation of Lu and idd [100] for the inverse, namely

= (&(T};,%:)) ® (T, Sir), as wellas  (2.20)
(©T3;) @ Tig. (2.21)

(Tjk, Xy = (Tig, Zir) © (T35, Xij)
Ty =Ty STy =

J

2.3 Quaternions

There are different ways to represent rotations in a matheatavay. Up to now, we de-
scribed a rotation by a rotation matri, However, we will also use a different representation,
namely quaternions, since they allow us to easily calcutdégmediate rotations. The follow-
ing section gives a brief description about quaternionsmckefer to Ken Shoemake’s technical
report [135] for more details.



12 Chapter 2. Notation

A quaternionq is a vector of sizd x 4 and describes a full three-dimensional rotation. More
formally, a quaternion is defined as (see also [135]):

q = (w,v) Wwithw € R, v € R? (2.22)

= (w,(z,y,2)) Wwithw,z,y,z€R (2.23)
——

= w+izr+jy+kz, (2.24)

with w being the real part of the quaternion antbeing the imaginary part respectively. In the
equation abovd, j, andk denote the complex dimensions with

?P=7=k*=1j-k=-1. (2.25)

Note that from the equation above we also obtain
i-j = k,and (2.26)
i-j = —j-i (2.27)

The set of quaternions forms a division ring (i.e., a fieldwiit commutativity for the multipli-
cation operator) with the addition and the multiplication as following. With respect to the
addition operatort, the set of quaternions forms a commutative group with

a1 +q: = (wy,vy) + (wa,va) (2.28)

= (wy + wg, vy + v3) (2.29)

= Qg2 +qi. (2.30)

(a1 +a2)+a3 = qi+(q2+qs). (2.31)
q+0 = 0+gq (2.32)

= q, with0 = (0,0,0,0), (2.33)

q+(-q) = 0. (2.34)

In terms of the multiplication operator,the set of quaternions forms a group without commu-
tativity, i.e., the following holds:

a2 = (wi,vy) - (W, va) (2.35)
= (wy - Wy — V1 - Va, VI X Vo +wy - Vg +wy - V). (2.36)

Here,v; x v, denotes the cross product between the two vectors. Furtinernve have

(@1 q2) a3 = ai-(q2-q3), (2.37)
s-q = q-s,forseR (2.38)

= (5,(0,0,0)) - (w,v) (2.39)

= (s-w,s-V). (2.40)

l-q = q-1 (2.41)

= q (2.42)

Let q* denote the conjugate gfwith

q = (wv) (2.43)
= (w, V). (2.44)
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We can now define the inverse quaterniprt of q as

*

q ' = L with (2.45)
lall
lal = a-q (2.46)
= q'-q (2.47)
= w447+ 22 (2.48)
(2.49)
We also have
(s1-a1+s2-q2) a3 = s1-q1-qs+s2-qa-qsz, and (2.50)
g3 - (s1-qur+s2-q2) = S1-q3-q1+52-q3-qa. (2.51)
For the sake of completeness, we also state the followingepties:
(@) = aq, (2.52)
(a1 q2)" = q3-q (2.53)
(a1 +a@)" = aj+a; (2.54)
lar-aqefl = [laull - [Jaz| (2.55)
Given a unit quaternion, i.e.,||q|| = 1, we can reformulate it as
q = (w,v) (2.56)
= (cosa,sina- V) (2.57)

for a vectorv € R3 with ||¥]|, = 1. In this case, the quaterniepdescribes a rotation &- «
along the rotational axig.

Spherical Linear Interpolation (SLERP) Using quaternions to represent three-dimensional
rotations allows us to calculate intermediate rotationsgispherical linear interpolation.

Let q; ® g, denote the inner product of two unit quaternions, ig.; g2 while treating both
guaternions as vectors which results in

q1®q2 = wl«w2+x1~x2+y1-y2+zl~zg (258)
= cosf, forap € [—m, ). (2.59)

Given a scalar. € [0, 1], slerp(q1, g2, v) calculates an intermediate rotation between the unit
guaternionsy; andq, as

sin(f - (1 —u)) sin(f - u)
- sin 3 T sin 3

(2.60)
(2.61)

However, since all unit quaternion form a sphere, thereséwib paths on the sphere fraiy to
q2. In order to get the “shorter” path, we finally calculate

slerg(qi,qz,u) = qi

_ slerg (qi, gz, u)  if [jai — Q2| < [la1 + qz|
slerflqi, gz, u) = { slerp (. — . 1) else. (2.62)

In Section 4.3, we will use the notation slé¢h w) for a given a rotation matrix). Here,
slerg@, w) is short for slerf(1, (0,0,0)),q,w) with q being the quaternion expressing the
same rotation as the rotation matrix Recall that(1, (0,0,0)) is the neutral element of the
multiplication, i.e., expressing a “zero-rotation”.
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Notation

2.4 Symbols and Abbreviations

The following tables summarize the symbols and abbrewatised in our work.

| Symbol  Description
x scalar variable
X, (...) vector
A matrix
{...} set
(...) ordered set (tuple)
X; i-th element of vectox
Aig) element in the-th row and;-th column of matrixA
xt, Al teN time indexed vector / matrix
xT, AT transpose of vector / matrix
1 identity matrix
Q information matrix
p(+) a probability density function
p(A | B) conditional probability of eventl, given evidence3
T, 6i a transformation from reference / nodw reference / nodg
(i,7) a constraint between nodend nodej
N (z; p, o) a Gaussian distribution with meanand standard deviation

\ Abbreviation Description
DOF degree of freedom
GPS global positioning system
IMU inertial measurement unit
MCL monte carlo localization
MEMS microelectromechanical systems
MHT multi hypothesis tracker
ML maximum likelihood
MLR multi-level relaxation
NARF normal aligned radial features
PDF probability density function
PID proportional integral differential
PGD preconditioned gradient descent
PPO path-parametrized optimization algorithm
RMSE root mean square error
SGD stochastic gradient descent
SURF speeded up robust features
SLAM simultaneous localization and mapping
SLERP spherical linear interpolation
TORO tree-based network optimization algorithm




Part |

Graph-Based Optimization for Efficient
Mapping
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Chapter 3

Basics on Optimization through Error
Minimization

We review the general problem formulation for error minimiz ation

using a graph-based model. We then describe least squares@r

minimization in general and show that graph-based optimiz&on is

an instance of least squares minimization. Subsequently,erMfocus
on preconditioned gradient descent and stochastic gradiemnlescent
for error minimization. Finally, we describe path parametrized op-
timization (PPO), a combination of both approaches entitld for 2D

robotic mapping, that forms the basis to our tree-based netwrk

optimization (TORO) algorithm presented in the next chapte.

As stated in the introduction the goal of the first part of thissis is to estimate a configuration
of the environment, given the history of observations. A omm way of doing this is through
a graph-based model consisting of a set of nodes and edgémugh a graph can be used to
model arbitrary relationships, our focus is on simultarselogalization and mapping (SLAM).
In our case, a node of the graph represents the knowledge ent#y, like a robot pose or
a landmark location, whereas an edge between two nodestrgfiattal constraints between
those. These spatial constraints arise from observatikasotlometry, laser scan matching,
vision tracking or another sensor, the robot is equipped.vitue to the noisy measurements,
all estimates within the problem formulation are affectgdnbise as well. Therefore, a con-
figuration of the nodes that satisfies a constraint is likelipe a bad configuration for another
constraint and vice versa. In this case, we say that thesgraonts have a contrary effect on
each other. In other words, we cannot compute a configurafitre nodes that perfectly satis-
fies all of the constraints in the general case. Our goal refbee to calculate the configuration
thatminimizeshe overall error introduced by the constraints, tmeximizingthe probability
of a configuration, given the data.

This chapter is structured as follows. We first discuss tlaplgtbased model formulation
in Section 3.1 and non-linear least squares in general itidde®.2. We describe the theory of
preconditioned gradient descent (PGD) with a special attieto Gauss Newton in Section 3.3.
Subsequently, we describe stochastic gradient descet)(f8Gection 3.4. Finally, we present
PPO, a variant of SGD introduced by Olsetmal.in Section 3.5. This approach, a combination
of SGD and an approximation to Gauss Newton, forms the baswt tree-based network
optimization algorithm (TORO) for robotic mapping presshin the next chapter.
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b)

Ps

Figure 3.1: A simple graph consisting of robot posps, . . ., ps (blue circles) and landmarKs, ..., 13 (green
stars). Constraints between robot poses are visualizethek lnes and constraints between a robot pose and
a landmark are displayed as orange dashed lines in (a). Tildenkrks can be marginalized out of the estima-
tion problem by transforming the edges into observatiorta/éen robot poses. This is visualized in (b) where
constraints between poses and landmarks from (a) are aramsfl into edges between robot poses, visualized by
orange lines in (b).

b)

Figure 3.2: Example for optimization: The robot traverses a loop antbcedizes to a previously seen location
indicated by the dashed orange arrow in (a). Minimizing therall error in this network results in moving all
nodes as visualized by the black solid arrows. The resuttpigmal configuration of the nodes is shown in (b).

3.1 The Graph-Based Model Formulation

A common way of describing a SLAM problem is through its grdgatsed (also called network-
based) model. In general, a Graph= (x,C) consists of a set of nodesand a set of edgea

In our particular case, the nodes represent either rob@sposslandmark locations, whereas
edges between two nodes describe the spatial relation éetthese. Note, that our goal is
to find the most likely configuration of the nodes, given thge=d In other words, we want
to calculate the most likely configuration of the nodes exygd by the data (i.e., satisfying
the edges). Thus it is convenient to call the edges@sstraints For an edge connecting two
robot poses, the spatial constraint can either arise frottomoommands or incremental motion
estimation. If an edge connects a robot pose and a landrhargpatial constraint arises from an
observation (e.g., visual features). Figure 3.1 (a) shosmall graph consisting of robot poses
pP1,-..,ps (blue circles) and landmarls, ..., 13 (green stars). Here, constraints (edges) are
visualized through lines for the case of connecting two tgwses (black lines) or indicating
an observation of a landmark (dashed orange lines). In ger@econstraint does not refer to a
perfect observation or measurement but rather represeisidution. In our case, we assume
the error in the measurements to be affected by white noigeian, we assume this distribution
to be Gaussian. Thus, each constraint is made of a mean abearand the corresponding
uncertainty (which is not visualized in Figure 3.1). As simduy Montemerlcet al. [105, 103]
we can remove the landmarks from the estimation process hbgimadizing them out of the
problem formulation. Marginalizing out a landmark, howewesults in connecting all nodes
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uncertainty
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Figure 3.3: Terminology for describing a grapl = (x,C). The set of parametess can be transformed into a
set of posep, with p;, p; € p. An observation of nodg seen from node is denoted ag,; and is associated
with an information matrix?;; describing the uncertainty of the observation. The fumcfig maps the current
configuration into a zero noise observation of ngdeen from node, thus computing the expected observation.
The difference between the expected and the true obsemvatibe errow;; of the corresponding constraint.

from which this landmark has been observed. By doing so, tfenration encoded in the
observation of the landmark was transformed into an obtiervanade about a robot pose.
This is visualized in Figure 3.1 (b). Note that the two coaisits between nodp; and node
p2 can be merged into one but this is omitted here for bettebiiiyi As stated above, by
optimizing the graph we seek to find the most likely configiorabf the nodes, given the data
(constraints). Consider for example the graph shown in Ei@u2. Here, the robot traverses a
cyclic path and re-localizes itself in a previously visitett of the environment. This is known
in the literature akop closing The corresponding constraint is visualized by the dashexpe
arrow in (a) where both poses connected through this arrewharsame. Optimizing this graph
results in moving all nodes in order to minimize the overalbe (indicated by the solid black
arrows in (a)) resulting in the configuration shown in Fig8r2 (b).

Assuming the constraints are affected by white noise we eaoribe a graph more formally
using the following definitions (see also Figure 3.3):

e Letx = (x3,...,x,) be a vector ofn parameters describing the configuration of the
graph. Note that these parameters could for example beldbsmmisep = (p1,...,Pn)
or any arbitrary set of variables. In the latter case, we rassthere exist a bijective
function ¢ mapping these variables to absolute poses (real world cwies), thus we
assumegy(x) = p andg~!(p) = x. The parameters are the nodes in the graph structure.

o Leti;; € R**! be a measurement between nadand node;j. It refers to a relative
observation about nodgeseen from nodeé. Here,k is the dimension of the observation
space. It is the mean of the Gaussian observation diswiuti

e The uncertainty:;; € R*** associated with the observation is expressed by the infor-
mation matrix(2;; = ;..

e The observation;;, together with the information matri®;; form aconstraint These
constraints are the edges in the graph structure. Note #ghatilvomit to draw the uncer-
tainty ellipsoid in upcoming figures for better readability

e C = ((i1,71),---,(im,Jm)) IS the set of all constraints and the associated information
matrices, with(i, j) being short for(d,;, €2;;).

e Finally, f;;(x) : RYIMx) — Rkx1js a function mapping the current configuration to a
zero noise observation of nogeseen from node. In other words f;;(x) computes the
expectedbservation given the current configuration of the nodes.
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Having this definitions at hand we can formulate the optitmraproblem as follows. Given
the set of poses and constraints encoded by the nodes anslredgectively we want to find
the configuration that maximizes the likelihood given theadencoded in the edges. Thus, we
want to findx* with

*

x* = argmax p(x | C), (3.1)

wherep(-) is an appropriate probability density function (pdf). Inngeal it is inconvenient
to evaluatep(x | C) since we need to reason about the state given the measur@regrnit is

a diagnostic system). The idea is to apply Bayes’ rule, tansfthe problem into a causal
system and reason about the likelihood of the data, giveruhent state. Applying Bayes’
rule to Eq. (3.1) leads to

x* = argmax p(x | C) (3.2)
Bayes e e 2C 1) P (3.3)
x p(C)

wherep(C) is constant, since is the random variable of our system. In addition, if no ferth
prior information about the configuration space is avadable can assumgx) to be uniformly
distributed. This allows us to simplify the equation abownel formulate the goal to find the
configurationx*, with

*

x* = argmax p(C | x). (3.4)

However, evaluating this equation is in general still uiical, if not unfeasible. Therefore
it is common within the robotics community to assume indeleeice between individual con-
straints. We further assume that the constraints, and treusieasurement errors, are affected
by white noise only. Although this assumption is violateddone degree in the real world (i.e.,
a sensor can have a bias in the estimate due to environmemigitions like temperature or
humidity) we neglect the error that is introduced by thisuaggtion. This allows us to simplify
p(C | x) in Equation (3.4) to

pClx) = ] p(i.4) %) (3-5)

(i,5)eC

Keeping this in mind we need to define teeror andresidual of a constraint. Given two
nodesi , j and a constraini, j) = (J;;, ;) between these we can define the efrgland the
residualr;; as

eij(x) = fi(x) =4 (3.6)

The errore;; is also visualized in Figure 3.3. Observe that the residupist the inverse of the
error. In other words, moving nodealong the direction of the residual; will lower the error
e;; until the minimume,;; = r;; = 0 is reached. This condition is fulfilled when the observation
0;; perfectly matches the configuration of the nodaad; and is called thequilibriumof that
constraint.

Due to the noisy measurements, however, we will in genenraémiee able to reach the
equilibrium of all constraints simultaneously. Thereforg goal is to find a configuration that
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maximizes the overall likelihood. We will later see, thatximaizing the overall likelihood is
equal to minimizing the overall error introduced by the doansts. Recall that we assume the
observation (Eqg. (3.5)) to be Gaussian. Thus, the likelihgdi, j) | x) of a constrainti, j) is

p((3,5) | x) = (27T)k/21|2ij|1/2 eXP(—%(fi‘(X) —0i3) Qi (fi5(x) = 055)). (3.8)

However, maximizing Eq. (3.5) is equal to minimize its négatog likelihood— In(p(C | x)).
This leads to

~(p(C|x) Y —In ( [T »tti.5) |x>) (3.9)
(i,5)eC
= ) (i) %) (3.10)
(,5)€C
with
—In(p((i,j) | x)) = _ln((27r)’f/21|2ij|1/2 eXp(_%<fij(X) — 0ij) Qs (fi5(%) = 655)))
= (@02 ]72) + (500 = 85 Vs fs () — 7))
o (fig(x) = 8i) " (fij(x) — 3ij))
= Gg(X) Qij €ij (X) (311)
= Tg;(X) sz Tij (X) (312)
=: X?j(x). (3.13)

Note thaty;;(x) is the Mahalanobis distance and represents the error betiveg@redictionf;;
and the observatiof); as a multiple of standard deviations. The notatio;gfg)has been chosen
on purpose because the underlying likelihood is Gaussidrttars the squared Mahalanobis
distance follows %2, distribution of degree, equal to the dimension of the error vectpf(x).
This allows us to rewrite Equation (3.9) to

e |x) B9 ((]:[cp(@,j)X) (3.14)
F 0 > 120 (319
Eq. (3.13) <Z§ (%) (3.16)
_ ;g)(ic) (3.17)

Recalling the original problem formulation, namely findihg tonfigurationx* that maximizes
the overall observation likelihood, we can finally reforauel this problem into calculating the
configurationx™ with

X = argmax p(C | x) (3.18)
= argmin —In(p(C | x)) (3.19)

X

F9 847 argmin x*(x). (3.20)

X
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To sum up, maximizing the overall observation likelihoodsiequal to find the configuration
x* that minimizes the observation error encoded in the consstanamelyy?. Unfortunately,
finding this global minimum in general is very hard and for mmsnimization problems we
can not even guarantee that a solution found by an algorghndeed the global minimum. We
therefore relax this requirement and focus on calculatiaglation that is a local minimum of
the error function. In other words, we seek to findsérsuch that for a small positive number
the following holds:

Vx :x — x| < e = 2(x) < X*(x). (3.21)

Having this at hand we now need techniques for calculatingand thus minimize the error).
Since the error function in general is non-linear (f.e., tlueotations), we cannot calculate
x* in one step. Therefore it is common to use iterative appresche., adjusting the actual
configurationx’ at timet to a new onex!*! that lowers the overall error. In the next section
we will briefly review least squares in general and show thatgraph-based model formula-
tion for robotic mapping is an instance of it. Subsequently,review preconditioned gradient
descend-based and stochastic gradient descent which farrbatsis of the optimization ap-
proach proposed by Olsaat al., that in turn is the basis to our tree-based network optimize
(TORO) described in Chapter 4. Note that we will call Olsorppr@ach also PPO throughout
this work, that is short for path-parametrized optimizatio

3.2 General Least Squares Problem Formulation

The general least squares problem can be formulated awfo{see also Franset al. [52]).
Givenm functionsf; : R™ — R with m > n and theerror function(also calledcost functiof
f=(f,..., fm)’ : R" — R™, our goal is to findk* with

x* = argmin (F(x)), where (3.22)

F() = D 1007 = 169" f(x) = | F ). (3.23)

In the special case where in the equation abtise is of the form
f(x) = b-— Ax, (3.24)

with known vectorb € R™ and known matrixA € R™*", we call it alinear least squares
problem, otherwise we refer to it asian-linearleast squares problem.

Note that least squares is a variant of the more general nzation problem, namely find-
ing a minimumx* for someobjective functionl?(x). In other words, a minimization problem
is called least squares, if and onlyfif(x) = F(x). However, as already mentioned in the
previous section, it is in general hard to find the global munin of a functionF'(x), especially
on a real valued configuration spa&&€. Thus, it is common to solve a “simpler” problem,
namely finding docal minimum of F'(x). In the remainder of this section, we will first show
that graph-based optimization as formulated in the lagi@eis indeed a least squares problem
and subsequently focus on basic concepts of iterative rdsttoo finding a local minimum for
Equation 3.23. Indeed, all general methods for non-lingéimozation are iterative.

Observe that our goal in graph optimization is to minimize ¢herally? error, that is

Xx) = > ) Qi) (3.25)

(i,5)eC
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Since the covariance matr;; = Q;jl is positive definite als6;; is positive definite [120] and
we have:
V(i,j) € C: rl(x);ri;(x) > 0,and therefore (3.26)

j

v<l,j> S C Elh”( ) . ”( )QZJ TU<X) == hij(X)Q. (327)

Here, the equality in Equation (3.26) originates from thet thatr;;(x) can be zero, i.e., when
the equilibrium of that constraint is reached. Except ofdifeerent indexing between Equa-
tion (3.23) and Equation (3.27) we finally obtain

Eq. (3.23) Zf (3.28)

Fa820) Z hij(x (3.29)
(i,5)ecC

= X(x), (3.30)

which proofs that graph-based optimization is an instafideast squares minimization.
Looking in more detail on iterative approaches for leastasgs error minimization, we can
summarize them through the following steps:

Algorithm 1 General Error Minimization Technique

1: choose an initial configuratiax, (also callednitial guess.

2: t =1 (¢ is the currentteration)

3: while convergence criterion is not fulfilled and< ¢,,ax do

4:  choose directionAx;

5. choose preconditionek; (if K; = «;I, then it is also calledtep length
6

7

8

update actual configuratios; ,; = x; + K;Ax;
t=t+1
- end while

All algorithms for error minimization differ in the calcuked direction and the chosen precondi-
tioning matrix (lines 4 +5 in the algorithm above). Howewee will focus on error minimiza-
tion techniques, following thdescending conditign.e,

dtog € NVt >ty : F(xi11) < F(xy). (3.31)

In other words, we focus on techniques that lower the errcgadoh step > t, but relax
this condition in the first steps (i.et, < ty) and thus allow the algorithm to escape from a
local minimum. There exist different types of convergengeeda but in work we say that an
algorithm converged to a solution if for a manually chosen 0 the following holds:

|F(xe1) — F(x)|| < e. (3.32)
Given this conditions, the most popular error minimizatiechniques include
e gradient descent [131] (see next section)
e stochastic gradient descent [17] (see Section 3.4)

e Newton’s method [131]
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Gauss-Newton (GN) [139] (see next section)

Levenberg-Marquardt (LM) [101]

Powell’'s Dogleg method [32, 119]

Quasi-Newton methods (QN) [28]

Fletcher-Reeves [49, 6]

Polak-Ribiere [119]

as well as variants or hybrids between the above [119, 138 Nhat the first six methods are
related to gradient descent, whereas the last two methadsiine the error based on conjugate
gradient.

As can be seen, there exits many techniques for finding aneic&num for Equation (3.25).
However, depending on the problem structure and the cotflignrspace, some algorithms are
better suited for optimization than others. In the contéxbbotic mapping we will see that path
parametrized optimization (PPO) as described in Sectidp&forms especially well. This ap-
proach is a hybrid between an approximation to Gauss-Neartdrstochastic gradient descent.
In the remainder of this chapter we will therefore first ihnoce preconditioned gradient de-
scent (PGD) and focus on a specific instance of PGD, namelgssldawton. Subsequently we
describe stochastic gradient descent and present patm@@ized optimization, PPO, which
forms the basis to our tree-based network optimizer (TOR@)e next Chapter.

3.3 Preconditioned Gradient Descent-Based Approaches

In the previous section, we formulated the optimizatiorgbem in terms of least squares error
minimization. Since the error function in general is namekr, we cannot calculate the optimal
configuration of the nodes within one step, i.e., calculdaat-square solution. It is therefore
necessary to estimate the configuration in an iterative mrarReformulating the optimization
problem in terms of error minimization allows us to use a wsg¢ of algorithms based on
(preconditioned) gradient descent. Intuitively, by miraimg the error of the configuration we
seek to find ax* where the derivative of the error function is zero (otheenlss configuration
would not be a local minimum). Note that the gradient of threrfunction is a vector pointing
towards the steepest ascent. Moving the configuration almngegative of the gradient would
lead to a new configuration with a smaller error than beforepelEng this process until no
major difference in the configuration appears (and thusahgth of the vector is close to zero)
leads to a local minimum. In this case, we say that the algoris converged to a solution. In
the following, we will discuss iterative error minimizatidechniques based on preconditioned
gradient descent. Together with stochastic gradient ae¢gsee next Section) this forms the
basis of the path-parametrized optimization algorithmd@Ppresented in Section 3.5.
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In its general form, preconditioned gradient descent cdotmeulated as

2 (<t
xH = xt—K(xt)aXa—S‘) (3.33)
_Axt
Oxi; (x")
— xt_ t A\
= x K(X)Z o (3.34)
(1,J) EC N —r
—Axfj
= X'+ K(x') Y Ax]. (3.35)
(i,5)€C

The individual components of this equation are:
e x', x'*! is the configuration of the nodes at time (iteratio@ndt + 1 respectively.

e K(x') denotes thereconditioningmatrix at timet. This matrix can in general can be
choserarbitrarily but mostly (and will be also in our case) is related to the Hessf the
residual.

02 (xt
e Finally, X3 ()
X

is the gradient of thqu error between nodeand nodey.

In most cases, an update after processing each constracttyeance is called aiteration. Up
to now, this is equal to a step in time, i.e., going froto ¢ + 1. However, this must not hold in
general. To prevent any ambiguity in the upcoming sectiaeswill refer to an iteration when
all constraints have been processed exactly once. If aatideris different from an update
t — t + 1, we will refer to the latter as step It is important to keep in mind, that the design of
the configuration space and the choice of the error functawe la critical impact on the number
of iterations needed until convergence (ilg?(x'™!) — x?(x!)|| < e, for a manually chosen
e > 0) of the algorithm as well as how fast a single iteration cawcdleulated [59, 94]. To get
an intuition why this is the case and how path parametrizenaation (PPO) in the context
of robotic mapping is obtained, we need to have a more ddtm'tmk at the gradient of thgfj
error and the preconditioning matrix. First, the gradigg;(x')/0x is reformulated as

O (x') - Ox(X') Oy (x) (3.36)

0x orij 0x
_ (1 (x")Qiriy(x")) 00045 — fi;(x")) (3.37)
orij ox

dey(x') _ Ofy(x")

ox  Ox
Here, J;;(x") is the Jacobianof the errore;;(x). Using this result (Eq. (3.38)), we can rewrite
Equation (3.34) to

= —2J§(Xt)9ijTij(Xt), with Jij(Xt) = (338)

Xt = x4 2K(x) Y Ty (x). (3.39)
(i,5)€C

In the special case where we remakiéx’) from the equation above we obtain the simplest
form of gradient descent, namely

Xt = x 2 ) T (x). (3.40)

(i,5)€C
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Reading Equation (3.40) from right to left allows us to explthe update rule in an intuitive
fashion.

e The residual;; is the negative of the error. Thus, moving the node alongebielual will
decrease the error introduced by the corresponding camtstiay ).

e The residual is modified according to the uncertaibty = Q;jl associated with the
constraint. In this case, the value is decreased, if thertaiogy is high (and thus the
information gain is low) and vice versa.

e Finally, the Jacobiaw;; transforms the modificatiof};;r;; from error space into config-
uration space.

Unfortunately, removingk (x*) in general leads to suboptimal convergence rates especiall
when the error surface is close to planar. Therefore manyowe versions of gradient descent-
based technigues include a preconditioning matrix speaglinthe convergence rate. One pos-
sibility to obtain an appropriat& (x") is to calculate in each step an update’ that zeroes the
current gradient. Note that if the error function is lineae converge within one step. In our
case, however, the error function includes both transiatias well as rotational components
resulting in a non-linear error function. Therefore it is1genient to assume local linearity only
(by zeroing the gradient at ting, resulting in the popular Gauss-Newton algorithm.

In order to calculate the step that zeroes the current gradie need to start with the Taylor
expansion of the gradient which is

ox 0x?

Ox%(x! + Ax! 02X
> X ) _ > (—2J5(Xt)9ij7”z'j(xt) + Poslx) )Axt +0 ((Axt)2>) :
(i,5)€C (i,5)eC
As stated above, we assume local linearity of the effowhich implies that we can approxi-
mate thex? error locally by a polynom of degree 2. In other words, we awsthe higher orders
O(Ax?) to be small and thus neglect their contribution in the abaeagon. Thus we get

Oxiy(x" + AX') 0% X (x")
Z J x ~ Z (—QJZ(Xt>Qij7“ij(Xt) + #Axt) (341)
(i,5)€C (i,5)€C
82
= Z (—2J5(Xt)QijTij(Xt)) + Z <%> AXt. (342)
(i,5)eC (i,5)eC

Setting this equation to zero yields the following expresdbr the incremenf\x’ at timet:

-1

62
Ax = ) % > 278 (x") Qi (x") (3.43)
(i,5)€C (i,5)eC
— Y Ty (), (3.44)

(i,5)€C
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with H(x") being the Hessian that we can further expand to

P (x) —2J7 (x") Qi (x")

H(x')= ) # = Y J 8x] ! (3.45)

(1,5)eC (1,5)eC
rij(x') 0 i (x)
— <i§>;c —ZJE;(Xt)Q” ]6)( — 8JX2 Qijnj(xt) (346)
TT(Xt)

= Z 2J£(Xt)QUJZj(Xt) Ox 5 QZJTZ]( t) (347)

(i,5)ecC

Recall that we assume that we can sufficiently approximatertoe e;;(x) (and therefore the
residualr;;(x)) through a linear function in the local neighborhoodxdf In this case, we can
neglect the contribution of the second derivative (righttén Equation (3.47)) and approximate
the Hessiarf/ (x") with

H(x") ~ Y 2J5(x";J;(x"), and (3.48)
(i,5)€C
-1
B 1
H(x)™' ~ 5 2);6 x5 (x| (3.49)
(1,

This allows us to finally rewrite Equation (3.34) to

Ov2. (xt
D (350)

(1,7) EC mmmnmmr

—Ax?].
HE X HE)T Y 200 () Qi () (3.51)

(1,5)eC
w29 o (5 pemae) X e 65
(i,j)eC (i,5)€C

As already mentioned at the beginning of this chapter, thabmr of iterations needed until
convergence is also dependent on the design of the confgusatpace and the error func-
tion. In other words: A constraint, j) can in general be dependent on more variables than
x;,...,X;. Let dep(i, j)) denote this set of variables. Consider another constfaint) with

j' > 1 > j and the corresponding set of variables the constraint isrtignt on, deg(’, ;')).
One parametrization space could lead to an intersectiateg€t, j)) N dep(i’, j/)) containing
more variables than in another parametrization space. Hawtne less variables a constraint
is depending on the sparser is the Jacobian which in retlowsus to use efficient algorithms
for inverting the Hessian. This speeds up the calculatioa single iteration. On the other
hand, the non-linearity of the error function has a direfiuence of the regularity of the Ja-
cobian (and thus the Hessian). A sub-optimal parametozatould lead to a highly irregular
Jacobian [59, 94]. This in turn allows only for small stepsce the changé\x’ calculated
in iterationt is based on a linearization of the error function that is thalid only in a small
neighborhood of the current configuratign
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In the case of robotic mapping, we will in general not be ablealculate a configuration that
perfectly matches all the constraints. Our goal therefete minimize the overall observation
error. If we have a closer look at Equation (3.52) we obsehat,in each iterationthe change
Ax' is calculated using the inverse of the Hessian. In our caseever, this formulation bears
several weak points. First of all, the Hessian is of sizen, with n being the number of nodes
in the network and is re-calculated in each iteration. Thlswation, however, is not feasible in
practise scenarios except for very small graphs. Additipifave calculate each step based on
the gradient o&ll constraints we reduce the chance of escaping from a locaimam. This risk

is increased in robotic mapping since it is more likely thanigtraints have contrary effects on
each other forcing the algorithm to converge to a suboptsuhltion. Indeed, Gauss-Newton
is highly sensitive to the initial guess and it is not evenrgateed to converge. It is noteworthy,
that the last remark is overcome by an improved variant knasvbevenberg-Marquardt which
has still the other problems discussed so far. These twd(@omputational complexity and
escape from local minimum) are addressed by ustoghastic gradient desce(@GD) which

is described in the next section and can be seen as partidfiggonal to the least squares
approach described above (Equation (3.52)). However, Weea in the next section, that this
comes at the cost of an much higher number of iterations wle@atd convergence.

3.4 Stochastic Gradient Descent

When we introduced Gauss-Newton, a special formulation @fqmnditioned gradient descent,
we saw, that in principle it bears two weak points. First, sung up the individual gradients
can reduce our chance to escape out of a local minimum. Setlmmdalculation of the full
Hessian is only feasible in the case of very small networksth Boints are addressed using
stochastic gradient descent (SGD). As already mentionedeirprevious section we can see
this approach to be partially orthogonal to Gauss-Newtarcalse of SGD, we start with pure
gradient descent, i.e., removirdg(x") from Equation (3.39) yielding

X = x 2 ) TRy (x) (3.53)
(i,9)€C

x X+ Z x")Qymi5(x). (3.54)
(i,5)eC

The key difference to gradient descent, however, is thatevead sum up all gradients within
one iteration but rather in each step chooseconstraint at random and calculate the update
given this gradient only. This leads to the following updatke:

K = x4 T () (xY), (3.55)

given the randomly selected constraint at titris (i, j). Although this increases the chance
to escape from a local minimum we cannot guarantee conveeganymore. Consider two
constraints having an opposite effect on the same variabiece one iteration contains the
variation of a single constraint only (and no Hessian) thosid lead to an infinity oscillation.

In order to ensure convergence, we use a learningX¥afalso called damping factor) to
scale down the gradient over time. According to Bottou [22,iveed to choos¥(t) such that

i At) = oo, i A(t)? < 0. (3.56)
t=0

t=0
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a) b)
P2 P w P3 p6=k1)5. Legend:
y 712 ;?"23 fij —>
(51']‘ _— >
P1 P1 P2 rij = 0ij — fij

Figure 3.4: Choosing the configuration space can have critical impadherperformance of the optimization
algorithm. Here, the nodes are parametrized in global ppsel$ initially (a) all constraints exceptl,2) are
perfectly matched, moving. along the residual will introduce an erress = —ro3 in the next iteration (b).
Therefore updating,> will slowly propagate through the network and the algorittuii need many iterations
until convergence.

Note that this also impliets‘,im A(t) — 0. Implicitly enforcing convergence by introducing a
—00

learning rate is also common within the machine learningroomty and leads to the update
rule of stochastic gradient descent (also called on-liaelignt descent):

Xt+1 _ Xt—i-/\(t)Jg(Xt)QijTij(Xt)a (357)

Observe that no preconditioning of the gradient is appliéectv can result in many iterations
if the error function atx’ is close to planar. Indeed, the combination of an approxanat
of Gauss-Newton and stochastic gradient descent togeitieawovel parametrization of the
configuration space are the key ideas behind the PPO algoriilinis approach combines the
strengths of both algorithms and is described in the nexicsec

Compared to Gauss-Newton, the missing preconditioningixnatakes SGD even more
sensitive to the configuration space and the choice of tloe frnction. Consider for example a
parametrization in global poses, i.e.= p. Figure 3.4 depicts a small example that will allow
us to emphasize this problem. In the initial configuratiorg(B.4(a)) all but the constraint
(1,2) are perfectly matched resulting in all residuals to be zgoeptr,,. Since the nodes are
parametrized in global coordinates, movimgalong the residual;, will indeed satisfyd;, but
on the other hand will result in,3 # 0 after this update as shown in (b). Thus, an update of a
single constraint will slowly propagate through the netwwahich will result in many iterations
needed until convergence is reached. Here, the correlagomeen individual constraints is
very high, since changing a variable locally (i.ps, in Figure 3.4) will have an effect on all
subsequent variables.

On the other hand, if we parametrize the configuration spaseich a way, that updating
a constraint immediately propagates to all subsequentsiodelved, this would lead to an al-
gorithm needing fewer iterations for converging. This efffis indicated in Figure 3.5. Starting
from the same configuration as in Figure 3.4 all constraireggparfectly matched except,. If
we could immediately propagate this update to all subsequates as indicated by the dashed
gray arrows in (a) we would need fewer iterations for convey@s indicated by Figure 3.5(b).
This behavior indeed is the key result of the PPO algorithnclvis described in the next sec-
tion. This algorithm uses an approximation to Gauss-Newtotombination with stochastic
gradient descent and forms the basis to our tree based ketytmization algorithm (TORO)
presented in Chapter 4.
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a) b)
P2 P P+ DPs Legend:

o o (r12) g (r12) &(r12) fij ————
T erererere |
p1 PI P2 P3 DPi Ps rij = 0i — fij

Figure 3.5: Choosing a configuration space where updating an constrasthe immediate effect of propagating
through the network (indicated by the gray dashed arrovedjlgian algorithm needing fewer iterations for conver-
gence. This indeed is one of the key contributions of Olseh&l.PPO algorithm described in Section 3.5. This
algorithm forms the basis of our improved tree based netwptimizer presented in Chapter 4.

3.5 A Variant of SGD for Efficient 2D Optimization

In the context of 2D robotic mapping, Olsenal. [116] proposed path parametrized optimiza-
tion (PPO), that can be seen as a variant of stochastic gtadiscent (SGD). In more detalil,
it combines SGD with an approximation to Gauss-Newton andv&lmparametrization of the
configuration space. Similar to SGD, this approach minisiiZzquation (3.20) by iteratively
selectinga singleconstraint(i, j) and moving the nodes of the graph in order to decrease the
error introduced by this constraint. Here, the stochad@ment is given through a random
permutation of the order of the constraints in each itergti@., until all constraints have been
used exactly once. Thus each iteratiois equal to|C| time steps, withC| being the number
of constraints. In the remainder of this section we will fpsesent the final update rule of this
approach. Subsequently we will introduce the parametozatsed in this approach, derive the
corresponding Jacobian and discuss the remaining paite eifpdate rule in more detail.

Given a constrainti, j) selected at time belonging to iteratiorr, the nodes of the network
(graph) are updated according to the following equation:

X = x4 () G (x7) T () Qi (x1) (358)

t
Axij

Reading the ternzi&xgj in Equation (3.58) from right to left gives an intuition alidibe sequen-
tial procedure of this approach:

e r;;(x) is the residual which is the opposite of the error vector. @ivanthe configuration
of the nodes in the direction of the residuglx) will decrease the erraf;;(x).

e ();; represents the information matrix of the constrding). Thus,2;,r;;(x) scales the
residual components according to the uncertainty of thatcaimt.

e J;;(x) is the Jacobian of the errey;(x) and maps the (scaled) residual term from error
space into a variation of the nodes in configuration space.

e K;;(x7) is a preconditioning matrix that is calculated at the bewigrof iterationr for
each constrain{i, j) given the actual configuration of the nodes,

e Finally, \(7) is a learning rate with decreases with each iteration ancemtie system
to converge to a (local) minimum.
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To understand how the individual components of EquatioB8Blook like, we first need to
introduce the parametrization used within this approachstated at the end of Section 3.3 the
choice of the parametrization has a high influence on theaxgewice speed of the algorithm.
To address the limitations introduced by using global paséise case of 2D robotic mapping,
i.e.,p; = (x;, s, 1), Olson and colleagues propose to use a world representsts®d on pose
differences that will allow us to propagate the update of ast@int(:, j) to all subsequent
nodes.

In more detail, given the set of absolute poges- (p1,...,p.), With p; = (24, i, i),
we define a new parametrization = (xi,...,%,), X; = (Ax;, Ay;, Ay;), based on pose
differences with

X1 = P1
X; = Pi— Pi-1, fori > 1. (359)

Note thatp;, — p;_; iS a pure vector subtraction, i.e, no motion compositiompigliad and that
we can easily recover the absolute poses, since

pPi = X = Py — Pr-1+ P1 - (3.60)

Thus, moving nodeéin one iteration has the immediate effect of moving all noges: as well.

It is therefore convenient to order the set of posdand thusx) ascending in time, i.e., given
p; obtained at tim¢; andp, obtained at timé,, with j > ¢, we assume; < t,. This is easily
achieved by using the incoming order of the state estimgtioness. For better readability we
also assume without loss of generality that

e j > ¢ for each pair of indexes, ¢, and

¢ all constraints refer to observations made from the comedimg node about the corre-
sponding nodég, i.e., all constraints are of the forfn, j).

The latter case can be enforced by replacing each constjaiby a corresponding constraint
(i,7). Given (j,i) is made up of two components, namely the information mdjxand
the relative transformation;;, consisting of a translatioty, = (x;;,y;;) and a rotationy;,
represented by the rotation matﬂ?)gi. In more detail, given

. = —Yji
B — cos vy —siny; and J... — Rji T j
J sin wji COS I/in ek 00 fl ’

we can calculate, j) = (6;;, ;) with §;; = (2, vi;, ¢i;) through (see Section 2.2)

Vij = =i,
tij = _Rjitjiy and
Qj = I QiJeji
Recall that each constraifit j) consists of a relative observation made about nodeen from

nodei, 4,5, and the corresponding information matfiy;, thus, each constraint is expressed in
the local coordinate frame of node On the other side all nodes, though represented through
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a relative sum, are in the global coordinate frame. To cateulhe error of a constraint we
therefore need to transform both into the same coordinat@dr In the following we will
calculate the error in the local reference frame of nod&iven the motion composition operator
@ and its inverses as introduced in Section 2.2 the eregy(p) is

eij(P) = (P ©Pi) — 0y (3.61)
= Rl (p;—pi) — 0 (3.62)

Here, R; is the homogeneous rotation matrix with

cos; —siny; 0

R, = sin v costy; 0 (3.64)
0 0 1
~ 0
= By (3.65)
00 1

Using the definition of relative displacements (Eq. (3.%8)can rewrite Equation (3.62) to

ey(x) = Ri(p;—pi)— 0y (3.66)
j i
Eq'EEQ) RZT (Z Xk — Z Xk> — 5ij (367)
k=1 k=1
J
= R x4y (3.68)
k=i+1

Recall thatx; = (Ax;, Ay;, A;)T and thatR; is the rotation of the-th node in global coordi-
nate frame. This rotation is now calculated given the rnegadrientations? »; through

R; = H Rap =t Rat.aq, With (3.69)
k=1
cos Ay, —sinAy; 0
Ra; = sin A, cos Ay; 0 (3.70)
0 0 1
~ 0
_ | fa (3.71)
0 01

Again, as in Section 3.3, we assume that the constraintsndepéndent of each other and
that the observation likelihood can be modeled using a Gaugsobability density function.
Additionally, by omitting the time indexfor better readability thgfj (x) error of the constraint

(i,7)is
(%) = (%) Q%) (3.72)
= ei(x) Qiei(x) (3.73)

j r j
Eq. (3.68) (R;p Z X, — (5ij> Q) <P%T Z X — (52.].) . (3.74)
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To derive the gradient of the; (x) error,

Ox3;(x)

aj—x X _Jij (X)Qijﬁj (X), (375)
that is part of the update terthx;; in Equation (3.58), we need to calculate the Jacobjaix)
of e;;(x). Observe thaf;; is constant and?! is nota function of the variables,, ;., but of the

anglesAy.; of xy.;, SinceR; = Rai.a;. The Jacobian;;(x) is therefore:

de;j(x)
Jij = 3.76
](X) aX ( )
0 (RzT i:z’ﬂ Xk — 5ij>
= (3.77)
ox
0 (R;f k=41 Xk)
= (3.78)
ox
= (4, A R---Rf0---0 |. (3.79)
—— —— N——
1,...,% i+1,...,7 Jj+1,...n
Here,0 is the3 x 3 matrix containing only zero elements, i.e.,
000
0= (000],and (3.80)
000
A, with s € (1,...,1), is expanded to
ORT S
AS _ 7 k=i+1 Xk (381)
0%,
_ a(HZ:l RA]f)T Z?{:i+1 Xk (382)
0%,
0X,4
00 T n»  pT J T
_ 0 0 RAi:As+1RAsRAsfl:A1 Zk:iJrl(Axk?Ayk) ] (384)
00 0

Note that theAd,, only depend on théx and Ay component of the;, and the contribution of
the A,, is therefore proportional to translational part— p;. Assuming this translational part
to be small, we can neglect the contribution of theand approximate the Jacobian with

Jij(x) ~ (0---0R/---RI'0---0 (3.85)
S—— —
0,.... i+1,...5  j+l,..n
= RFl0O---07---T0---0 (3.86)
S—— e —
0yei i41,j j+1,..m
;
= R/ Y I (3.87)
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with Z;, defined as

Z. = (0,...,0, I ,0,...,0|,and (3.88)
——— N ——
0,...,k—1 k kE+1,...n
100
I = 010 ]. (3.89)
00 1
We can now see what the effects of choosing such a paramemnizae. First of all, a constraint
(i, 7) will keep the nodei fixed and distribute the residual along the variabtes, . ... x;

only. This update, however, will also immediately propagatall nodes: > j because of the
special parametrization (see Equation (3.59)ff). Secaedilso see that the Jacobian belonging
to a constraint takes a very simple form (see Equation (38R)ch allows us to calculate
J 5 (x)Qy;mi;(x") quite fast.

As stated in the beginning of this section, the update rulRD is

X = x4 A7) K (xT) I () Q5 (%), (3.90)

thus it remains open how the preconditioning matkix (x”) and the learning rata(r) are
chosen which will be discussed in the remainder of this sacti

To ensure convergence of the algorithm, the authors praposse a\(7) that decays in each
iteration and fulfills the requirements as stated in Equation (3.5&) wi

A7)

AT +1) N+ T for 7 > 1, and (3.91)
A(1) = 1/3, which results in (3.92)
A1) = 1/(t+2), forT>1 (3.93)

The preconditioning matriX(;; (x") in Equation (3.90) is an approximation to the precondition-
ing matrix of Gauss-Newton which is (see Section 3.3)
—1
a7 (x) RS Q) | (3.94)
(i,5)eC
Looking closely at the equation above, we see that the matris of size3n x 3n, givenx =
(x1,...,%,) and inverting such a matrix is computationally expensivié i§ not very sparse.
Therefore we calculate the Hessian only at the beginningnateaationT and approximate its
inverse by inverting the diagonal elements/dfx™) only. This results in
-1

H'\(x7) =~ |diag| Y  JL(x")Q;J5(x") : (3.95)
(i,5)eC

Observe, thaf{ ~(x7) is now a matrix of sizen x 3n having the only non-zero elements at

the diagonal. We can further divide the diagonal intblocks D; ',k = 1,...,n, each of size
3 x 3 (also with the only non-zero elements on the diagonal) shah t
DYoo -0
) . 000
—1 . .
H ' (x") = (_) D - ,withO0:= | 0 0 0 (3.96)
L 0 000

n
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Since applying a constrairt, j) yields in an update of the variables, to x; only the corre-
sponding preconditioning matrik;;(x”™) contains a total of; — ) matrices on the diagonal,
each of size} x 3, and all other entries being zero. In more detai);(x") is of the following
form:

Wi, -

Here, theW,:j of K,;j(x™),withk =i+ 1,...,, are computed using Equation (3.96) as

j —1
W97 = (j—1) [ > D;}] D; . (3.98)
m=i+1

Intuitively, the individuaIW,ij weight the residual of the constraifit j) according to the ra-
tio between the uncertainty of the current nogewith respect to all other nodes involved in
this update, scaled by the affected number of nodgs; i). Here, the update of a node
will be proportional to the uncertainty affecting it. Considhe example where all constraints
connected to nodé have a low uncertainty (and therefore large numbers in tfenmation
matrix). According to Equation (3.95) the corresponding’ will contain small values only.
Consider further a constraifit j) updating the nodeist+ 1 to j, withi+1 < k£ < j, whereas alll
the other nodes,,,, with, m =i+ 1,...,j,m # k are connected to constraints (excépy))
having a high uncertainty and therefore low values in therimftion matrix. In this case, the
correspondingD,,! will be made up of high values. Thus, the corresponding V\tdj{zjﬁ will

be small. In other words, nodes having a high uncertaintgrgssed by connected constraints
having a high uncertainty) will be affected by a strongeratéon than nodes having a small
uncertainty. It is noteworthy, that in the final step of thigaxithm each WeighW,jj is clamped
to a maximum preventing the update from overshooting.

To summarize, PPO is an algorithm for 2D robotic mapping Wiiéca combination of an
approximation to Gauss-Newton and stochastic gradiegemslt uses a novel parametrization
in the context of graph optimization based on pose diffezsrtbat results in an update rule
allowing us to compute a single iteration quite fast. Thisapaetrization also significantly
reduces the amount of iterations needed for convergendg §irice an update of a nodevill
immediately propagate to all subsequent ngdesith j > i. Unfortunately, this algorithm still
bears some drawbacks.

e PPO assumes that the nodes are ordered ascending in tinteforegPPO, cannot deal
with arbitrarily connected networks which can be preserntrixctice. Such a network
could be for example constructed by two robots exploringrasirenment while sharing
the same map observing each other once in a while.
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e Furthermore, PPO assumes that the nodes are ordered acctorgoses along the trajec-
tory. This results in adding nodes to the graph wheneverabetitravels for an extended
time in the same region resulting in an algorithm where thematational complexity
is proportional to the time spent in the environment ratbethe space. The reason for
this is that the ordering of the nodes prevents PPO from megmgiultiple nodes into one.
This, however, is a necessary precondition to performldifeg map learning.

e When updating a constraiki, j) between the nodesandj, the current parametrization
requires to changgj — i) nodes. As a result, each node is likely to be updated by sev-
eral constraints, which leads to a high interaction betwamsrstraints and will typically
reduce the convergence speed of this approach. For examptejek will be updated
by all constraintgi’, ;') with ' < k£ < j’, which is common in practice when a robot
re-traverses already known areas, i.e., performs looss Note that by using an in-
telligent look-up structure [114], this operation can beiea out inO(log n), wheren is
the number of nodes in the graph. Therefore, this is a prololeconvergence speed of
this algorithm and not a computational problem.

e The current parametrization is only valid for 2D robotic maw, i.e.,p = (z,y,),
although an extension towards, y, z, v) is straightforward, this algorithm cannot deal
with full 3D rotations.

All these points are addressed by our novel tree-based retwpdimization algorithm for the
2D and 3D case presented in Chapter 4. We present a novel peratien for graph-based
error minimization. We will demonstrate that our algoritiymelds accurate results for robotic
mapping but needs substantially fewer iterations than fipgcach presented here, while the
computational burden for a single iteration is comparabials We will furthermore demon-
strate, that our update rule allows us to deal with arbitretworks and significantly reduces
the oscillations of a node during an iteration. We will dédserour node reduction technique
resulting in an algorithm not depending on the length of thgettory but on the area explored
by the robot. Finally, we present an extension towards thmeensional graph optimization
and demonstrate the robustness in several simulated dndodd experiments.



Chapter 4

Tree-Based Graph Optimization

We present an extension to path parametrized optimization®PQO)
by applying a novel parametrization of the nodes that signiftantly
improves the performance in 2D. We present a further extensin
that enables us to deal with 3D data. Subsequently, we presea
technique for node reduction yielding an approach whose copu-
tational time is depending on the size of the explored envimmment
rather than on the time spent in it. We evaluate our approach o
large simulated and real world data sets and demonstrate thawe
outperform current state-of-the-art techniques.

In the previous chapter we reviewed the basic principlesibdp@aph based optimization within
the context of robotic mapping and saw that we can reforrawdatgraph-based optimization
problem in terms of least squares error minimization. Sgbeetly, we described a technique
commonly used within the robotics community, namely pretittoned gradient descent and
focused on Gauss-Newton. Furthermore we described stochesdient descent, an approach
containing orthogonal elements with respect to precoonkil gradient descend. We presented
the path-parametrized optimization algorithm (PPO) wisancombination of both techniques.
This approach is a fast and robust algorithm for 2D robotippireg and belongs to the current
state-of-the-art. However, the specific design of this @tigm still bears some disadvantages
that result in a suboptimal behavior. This includes an iaseel number of iterations needed
for convergence due to the parametrization as well as itpatational dependence on the time
a robot traveled in an environment rather than on the enweont size. Finally, the algorithm
works only on a configuration space containing at most oraiootal axis, i.e., the yaw. In this
chapter we will present our tree-based network optimizasilgorithm, an improved version
of the PPO approach for both the 2D case and the full 3D caseding 3D rotations. We
demonstrate that our algorithm needs substantially fei@gations until convergence for the 2D
case (without any loss in accuracy). Furthermore, we shaivdtr three-dimensional version
can even optimize large networks in full 3D where many stditthe-art techniques cannot be
applied to.

This chapter is structured as follows. We will first introéwaur novel tree-based parametriza-
tion in Section 4.1 and derive the corresponding update farl@ptimization in 2D. Subse-
guently, we present our extension towards 3D optimizatioBdction 4.3 and analyze the rota-
tional error distribution in Section 4.4. Furthermore, wegent a technique for merging nodes
and thus reducing the number of variables in the graph ini@edt5 leading to an optimiza-
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tion algorithm whose computational time is depending orsthe of the explored environment
rather than on the time spentin it. In Sections 4.6 and 4. AMakiate our approach on big simu-
lated data sets as well as on real world data sets, both in @BRmand compare our tree-based
network optimizer to current state-of-the-art approachetuding a detailed comparison to the
incremental approach (PPO). Finally, we discuss the o#laif our algorithm to the literature
in Section 4.8 and conclude in Section 4.9.

4.1 Tree Parametrization and 2D Graph Optimization

One of the key contributions of PPO is the novel parametdradf the configuration space
in terms of pose differences. We saw that this resulted imgplsi update rule that is easy
to implement. In this section we propose a different paragadton that results in a slightly
different update rule but is still compact and easy to img@emHowever, it reduces the number
of times a node will be updated by different constraints, tlee correlation between different
constraints is even lower than in the case of PPO. Espeaniign closing a loop, we will see
that our parametrization updates a smaller set of variabkadting in a faster convergence of
the algorithm (to a correct solution). As in the case of PPOupadlate rule is of the form

X = x4 A7) Ky (x7) 5 () Qi (x1) (4.1)

Vv
t
Axij

Here, we assume that we update the graph according to a @omgir j) selected at time
belonging to iteration. However, in our case we will not permute the set of constisaheach
iteration (as it is the case in PPO) but select the constraints in a fisgkelr.dNe will see later,
that this order is given by our tree structure and reducesdneplexity of an iteration. For
better readability, let us first recall from the previousutea the individual components of this
update rule:

e 1;;(x) is the residual which is the opposite of the error vector. @iranthe configuration
of the nodes in the direction of the residuglx) will decrease the errar;;(x).

e (),;; represents the information matrix of the constrding). Thus,;;r;;(x) scales the
residual components according to the uncertainty of thatcaimt.

e J;;(x) is the Jacobian of the errey;(x) and maps the (scaled) residual term from error
space into a variation of the nodes in configuration space.

e K,;(x7) is a preconditioning matrix. It is calculated at the begmnof iterationr for
each constrain{i, j) given the actual configuration of the nodes,

e Finally, \(7) is a learning rate that decreases with each iteration an@srtak system to
converge.

In the remainder of this section we will first introduce owgemparametrization. Subsequently
we will derive the individual components and show the défezes compared to previous ap-
proaches.

Similar to PPO (see Section 3.5) we propose a parametnizgised on pose differences. In
our case, however, we relax the requirement that the posesdered along the trajectory but
parametrize the configuration space as follows. Given tiselate posep = (pi,...,pn)’,
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with p; = (2,35, ;)7 , the parametrizatior = (xy,...,x,)7, withx; = (Az;, Ay, Av;) T is
obtained as:

x; = p1 (we will call it the root node) (4.2)
x; = p; — parentp;), fori> 1. (4.3)

Here, the parent op; is the predecessor with the smallest index (i.e., the “d¢ldesde) for
which a constraint between both nodes exists, thus

parentp;) := pgWith3(, k) ANNVGE), K #k: K > k). (4.4)

As in previous work [116], we also assume all constraintadpef the form(s, j), with ;7 > 7 and
that we can transform each constrajnt) into a corresponding constraifit j) as described in
Section 2.2. We can also easily recover the global poseseptation, since for eagh, there
exists gpathP;.; connecting the root node, = p; andp; in the tree structure. Without loss of
generality, let us assume this path toBg = (x;, = x1,%y,,...,X;,). We can then recover
the posep; by summing up the individual components, i.e.,

in

p: = Zxk. (4.5)

k=11

To get an intuition about the structure consider the two gtasshown in Figure 4.1. Each
example consists of a trajectory and the correspondingstraeture given by our parametriza-
tion. Within each trajectory, black arrows indicate motcamstraints and orange arrows visual-
ize observations made about the corresponding node ¢iap,dlosures). The second example
(Figure 4.1(right)) displays a typical situation that isrcmon in practice, namely re-traversing
a loop several times. Especially in this case, the treetstretias the main advantage of keep-
ing the number of nodes involved in an update of a constramnatls We shall see later, that an
update indeed only involves the set of variables belongindpe loopin the tree structureIn
more detail, consider for example the constraint2) in the leftimage or alternativel{i, 9) in
the right image of Figure 4.1. Updating such a constraintgiie incremental parametrization
as proposed in the previous chapter would result in an erstiittition among all nodes in this
loop. When using our parametrization, however, updating ¢binstraint yields in an update
including the nodes, 2, 3,10, 11, 12 in the first example and, 5,9 in the second one. Again,
updating the constrair{t, 9) in the second example will only affect the node$, 9 but leave
all other nodes unchanged. Here, we can already see thgiatasnetrization will have the
effect that a nodé, for which many constraint&, j), with i < £ < j, exists, will be updated
less often through potentially counter effective constsathan in the case of the incremental
parametrization. We will demonstrate in the experimergation, that this indeed will lead to
an algorithm that needs less iterations until convergeNoge that in case no loop closures are
present, our tree structure degenerates to a linear ligliiygethe same parametrization as in the
case of PPO. To derive the individual components of the @pda¢ given our parametrization
let us start with the definition of the error of a constrdiny), which is

€ij (P) = (pj © pi) — 0jj (4.6)
= R} (p;—pi) — 0 (4.7)
Recall, that there exists a path.; = (x;,, . - ., X;, ) from the root nodex; = x;,, to each node

present in the network. Thus the rotation of a nedexpressed through the homogeneous
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Figure 4.1: Two examples of a robot trajectory and the corresponding $teuctures. The black arrows in the
tree indicate the constraints between the node and its fparerthe corresponding;, whereas the dashed orange

arrows visualize off-tree constraints, i.e., constrathtg are present in the sétof the graph, but are not used in
n. Observe, that for each nodethere exists a path between this node and the root rpdy

anyx;,i=1,...,
definition.

rotation matrixR; (see also Equation (3.69)ff in Section 3.5) is

cosy; —siny; 0
R, = sin ¥; cos; 0 (4.9)
0 0 1
11 Rar = Rai.ai,, with (4.10)
k=11
cos Ay, —sin Ay 0
Rar = sin Ay, cos Ay 0 (4.11)
0 0 1
~ 0
_ | Baw (4.12)
0 0 1
Using our tree parametrization, the eregi(x) is then
eij(x) = RZ’T(PJ‘ —Pi) — 04 (4.13)
jTL i’VL
RT <Z Xp— Y xk> — b (4.14)
k=j1 k=11

Whereas Equation (4.14) looks more complex than in the PP@itlg, we can also simplify

it. Consider for example the constraif, 6) in Figure 4.1(left). To calculate the error of this
constraint, we need to calculghg — ps. In this example we hawe; = (x; +x, +x3+x¢), and

ps = (x1 + X3 + X3 + x4 + X5) and thereforgs — ps = x6 — x5 — x4. In other words, we need
to climb up the tree from nodeto the common parent node of nodand nodej (which in the
worst case is the root node) and then traverse the treengtémdim this parent node downwards

to nodej. We refer to the nodes one has to traverse on the tree of araimsts thepath of
. X(ij),) 1S the path from nodéto nodej given

that constraint. For exampl®;.; = (X(.j),, - - -
the constrainti, j). We can divide such a pa#;; into an ascending paﬁ[_ (from node: to

the common ancestor) and into a descending?@%ﬁtstarting from the common ancestor node
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down to nodg. In the example mentioned abo@, s = (—x5, —X4, Xg), 7?5[_6} = (x4,X5), and
735[)2] = (x¢). Note that formallyx; € P but we will also writek € P, which is an abbreviation
for k : x;, € P in the remainder of this section. This allows us to formulde error of a
constraint as

eij(x) = (P; O Pi) — 0y (4.15)
In in
= R/ (Z Xk — Zm) — 0y (4.16)
k=j1 k=i1
= Rf Z Xpl+] — Z X1 | — 04 (4.17)
k[HeP}j;] k[*]epi[;]
= RI' D s(xpig)xe — b, (4.18)
kEP;.j

and (for completeness) thé error of the constrainti, j) as (see Section 3.1 for a derivation)

X5(x) = ei(x)" Qe (x) (4.19)
T
= BRI s(xp i j)xe — 6y | Q| BEY s(xu,d, j)x — i | - (4.20)
kepiij kePi;j
Here, we used(xy, 7, j) to indicate to which part the node belongs to, given the fathi.e.,
= T 4.21

Given the erroe;;(x) and keeping in mind that; is constant with respect to the configuration
we can now derive the Jacobidp)(x) with

3eij (X)

8 (RzT Zkepi;j S(Xk, i,j)Xk — 51J)

= (4.23)
ox

0 (RzT ZkG'Pi-j S(le 7:7 .])Xk>

_ : (4.24)
ox
0| R ( Yo Xpm— ) Xk[]) ]
kHeplt] k-lepl]
= J J . (4.25)
ox

LetP1.pi,5) be the path from the root node to the last (defined by their index) common parent
of nodei andj, p(i, j). The Jacobian/;;(x) is then build of four types of derivatives. The

derivative of the erroe;;(x) with respect tax € Py.y(; ), X € 73,»[:;], X € PZ[J;} and finally all



42 Chapter 4. Tree-Based Graph Optimization

remainingx. Thus, the Jacobian is of the form

9 RiT Z Xpl+ — Z Xl

kHlepl] K-lepl )
0 00
= | A A, Rl---RF0--.0 | witho=|[ 0 0 0 (4.27)
———— N — ——
Lop(i3) P(if) 1o (G41)see 000
Here, the individual?! belonging to the Jacobiaf;(x) are of the form
~RT iff k e P
R = R iff ke P (4.28)
0 else
TheA,,s € 1,...,p(i,j) can be further expressed as
ORT s(xg,1,5)x
A = Zkepm (ks 7, )Xk (4.29)
0X,
Eq.ﬁl.lO)ad_[Zn:il RAk)T Zkepi;j S(Xk? i, j)xk (4 30)
B 0x4 '
. a H;elzin ng: ZkePi:j S(Xk'7 i’ j>Xk (4 31)
N 0%, '
_ 00 RAin:As—f—lRAsRAs—l:Ah ZkEPM S(X'If’ Z’])( Tk, yk) . (432)
0 0 0

Again, we see that the contribution of tHg is proportional to the translational distance between
node: and nodej. Assuming this distance to be limited, we can neglect thecefdf the
individual A,. Given the definition of, (see also Equation (3.85)ff), namely

100
7, = |(o0,...,0, T ,0,...,0],withi=| 0 10 |, (4.33)
“ 001

0,....,k—1 k k+1,....n

we can finally approximate the Jacobidn(x) through

Tij(x) ~ R} Z Ty — Z Ty | - (4.34)
)

k+lepl] K-lepl

In other words, the Jacobian is built of positive and negatotational blocksR!, depending
whether the corresponding node belongs to the ascendifgeatescending part of the path
P;.;. In this case, the common parent nodég,, p), is kept fixed and the error is distributed
along the patlP;.;. Recalling the update formula from the beginning of thisisect

xit = xt—|—)\(T)Kij(XT)JT(Xt)Qijrij(xt), (4.35)

ij

Vv
t
Axij



4.1. Tree Parametrization and 2D Graph Optimization 43

we now need to address the remaining components, namelyeberglitioning matrix/<;; (x7),
the learning rate\(7) and the order of the constraints in each iteratioi\s in the case of the
incremental parametrization we approximate the inverseeoHessianH (x7) !, at the begin-
ning of iterationr through

-1
H'(x7) =~ |diag| Y  JH(x")Q;J;(x") . (4.36)
(1,5)eC
Again, observe that/ ~!(x") is now a matrix of siz&n x 3n having the only non-zero elements

at the diagonal. Thus we divide the diagonal intblocksD,;l, k=1,...,n,eachofsiz& x 3
(also containing non-zero values on the diagonal only) shah

DYoo -0
: : 000
DY o .
H ' (x") = 9 2 ,witho:= | 0 0 0 |. (4.37)
0 -~ 0 D!

Updating the graph given the constraint;) leads to a variation aomevariablesx;, with
xs € Pi;. Thus the preconditioning matrik;;(x™) contains a total ofP;.;| matrices on the
diagonal, with|P;.;| being the number of element of the pah;, which we will call thelength
of the corresponding path. These matrices are each oB3siz8, and all other entries in the
matrix are zero. In more detaik’;;(x") is of the following form:

0

Wi+ :
g(xT) = , (4.38)

WY

0

where the individualV;” of K;;(x7) with & € [p(4, j) +1, ..., j] are the onlypossiblenon-zero
blocks. These are computed using Equation (4.37) as

-1
- . B -1 -1 .
wii = S )Pl m;m- D, | Dy ifkePy (4.39)
0 otherwise

Note that our approach updatg3 ;| variables rather thafy — i) as in the case of PPO (see
Equation (3.98)) since in PPO, all of thE,’ are non-zero. Again,(sy, ¢, j) is defined as

. +1 if x;, € P
S(Xk,1,7) = _ (o 4.40
(Xp, 1, 7) { “1 ifx, € Pi[:j]' ( )
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As proposed in previous work [114], we clamp the individM‘aii; to a maximum (see Sec-
tion 4.3) preventing an update from overshooting. Furtleeemwve choose a learning ratér)
(see Equation (3.91)ff) as

A1) = 1/(t1+2),forT > 1. (4.41)

Now that we have defined all components of the update rule Espgation (4.35)) it remains
open how to order the set of constrairitsin each iteratiorr. In general, we could also permute
the setC at the beginning of each iteration but our incremental treeigdes us with a natural
order which results in a reduced complexity. To understahy this is the case let us again
have a look at the Jacobian, which is

Eq. (4.34)
Jix) =T RN Tua— Y Ty | (4.42)
K+lepft] K-lepl]
Thus we have to calculatB, = Z":il Ray in order to update the variables, given the con-
straint (¢, j) and the pathP;,;, = (x;,,...,x;,). Let thelevelof a node be the distance in

the tree between the node itself and the root node (i.e., épéhdn the tree), which implies
levelOf(x;) < i. Let furthermorex;; be the node in the path;.; with the smallest level. The
levelof the constrainti, j) is then defined as the level gf;. The common parent of the nodes
iandy, p(i, 7), is kept fixed and only nodes which have a bigger depth thaodhemon parent
are changed. In other words, our parametrization impliasupdating a constraint will never
change the configuration of a node with level smaller thanakel of the constraint. Based
on this knowledge, we can sort the constraints accordingeadevel and process them in that
order. As a result, it is sufficient to access the parenkpfto computeR; since all other
nodes having a smaller level than have already been corrected in this iteration. Otherwise,
and it is the case in the previous approach, we would needtalcalate?; each time from
scratch resulting in a higher complexity per iteration. Uf&y4.2 illustrates such a situation.
Each image consists of the trajectory (top) and the tregdimt Figure 4.2(a) shows the initial
set up of the tree and the remaining images (b-f) visualieepitocessing order of the con-
straints, emphasized by the orange dashed arrows. Hegrdbessing order of the constraints
is (8,9),(7,8),(11,12),(6,7), and (5, 6). Note that we only provided the order of the off-tree
constraints (i.e., of loops in the trajectory) and omittedriclude constraints like1,2) for
simplicity. In Figure 4.2(b-f), the nodes of the path, and the corresponding common parent
(which does not belong to the path) are shaded in the treto(bgdart). Within the trajectory
(top part) the very same nodes are highlighted for betterahigation. Optimizing such a net-
work using the incremental parametrization rather thais ewguld lead to many updates in the
nodes as will be shown in the experimental section of thiptdrgSection 4.6). Consider for
example the loof, 2, ...,9. Whereas in previous work, updating the constrain®d) results

in a variation of the nodes, . . ., 9, our parametrization leads to a variation of the natlaad

9 only.

The differences between the individual components of oareimental tree parametriza-
tion approach and the incremental path parametrizationoapp (PPO) (see Section 3.5) are
summarized in Table 4.1. Here we can see, that our algoritsrmahcomparable update rule
as well (and thus a comparable complexity per iteration)wéi@r, we will show in the next
section, that our incremental tree parametrization leadmtalgorithm needing substantially
fewer iterations to converge than the previous approacédas the incremental parametriza-
tion only. Up to now, we have provided the update rule for tBecase (i.e.p; = (x4, yi, ¥i)7)
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Figure 4.2: This example visualizes the processing order of the cansdreEach image (a-f) shows the trajectory
(top part) and the tree (bottom part). The initial situatisrshown in (a), whereas the images (b-f) show the
processing of the constrain8, 9), (7, 8), (11,12), (6, 7), and (5, 6). Here, the nodes affected by the constraint,
including the common parent, are shaded within the tree aidighted in the trajectory for better visualization.
Note that this images show the processing of the off-treetcaimts (dashed orange arrows) only but in general
the tree-constraints, likél, 2) are also processed.

only. Although this approach can be extended towards 2.%0,d; = (24, vi, 2:,%:)" in a
straightforward manner, the current form of the optimizatalgorithm can not deal with arbi-
trary 3D rotations. After providing an analysis of our cuntralgorithm in the next section, we
will therefore describe our update rule for the three-digi@mal case in Section 4.3.

4.2 Analysis of the Algorithm

This section is designed to give a more detailed understigrah the effect of the incremental
tree parametrization with respect to PPO as described itioBe®.5. We generated a data set
by simulating a robot moving in a grid world. A schematic vielthe trajectory is depicted
in Figure 4.3(a). The robot starts at notleand subsequently moves to nodes, ..., 23.
However, a path from one node to another in this descriptmrsists of totab nodes in our
simulated data, leading to a network containing a totak®f 6 = 138 nodes (poses). The
robot observes all other locations (nodes) in its localniigiwhich results in500 constraints.
Both poses and edges are corrupted by a zero mean Gaussiaadisg a standard deviation
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PPO | Our approach
xit = x' + Axj;, for a constrainti, j) € C
AX; = A7) Ki;(x7) J)5 (x")Qm;(x"), for iterationt
% X1 = P1
X;=Pi —Pi-1, 0 >1 x; = p; — parentp;), i > 1
+ —
Pi:j = (Xi7 Ce ,Xj) - (X(i:j)la S 7X(i:j)‘7:i:j|) - Pz[]] U P’L[j}
j
Jij(X) ~R > I ~RI | Y Lun— X Ty
k=i+1 JAE Epi[;] kL] Epz‘[:;]
K build of diagonal blocksV}:
( r !
; 1 |Pij] Zp DY Dpt ke P
. . _ meP;.;
Wk (] - 2) [ Z-HDml} D’f ' ke Pitj r ' -1
ij m=1 . —1 -1 (-]
0 _otherwise | | —IPil ; Do\ Dy sk e Py
_m J -
\ 0 , otherwise
A(T) =1/AN7+2), 7>1
C random permutation in each iteratim ordered wrt. tree parametrization

Table 4.1: Comparison of the optimization algorithms and their indixal components. The individual compo-
nents of PPO [116] (see previous chapter) are summarizdetilett column whereas the right column states the
components given our tree parametrization, respectively.

of 0.1 along all axes. The network obtained using these paramistst®wn in Figure 4.3(b).

The evolution of the network after iteration 5, 10, and 30 for both approaches is shown
in Figure 4.5. Comparing the result of PPO (left column) to maremental tree approach
(right column) we see that our approach leads visually to eemonsistent graph already after
five iterations compared t80 iterations in the case of PPO. To quantitatively evaluaté bo
approaches we calculated thé error per constraint. This number is obtained by dividing th
overall? error (see Equation (3.17)) by the number of constrajGtsand reflects the average
error in the network. Figure 4.4 depicts th&error per constraint for PPO (dashed line) as well
as ours (solid line) for the firgt000 iterations.

As stated in the beginning of this chapter, our incremengal optimization algorithm needs
fewer iterations until convergence (see also Figure 4.4)aii the reason for this is that our
approach typically updates fewer (but sufficiently manyje®when distributing an error along
a loop. This indeed has the effect that constraints havimgrary effects on nodes will lead
to less oscillations in the graph. To emphasize this let gagmn two nodes in Figure 4.3,
namely node3 and node22. These nodes have been selected due to their differentdével
connectivity, i.e., the number of connected edges. Theu&wol of the nodes in each axis is
shown in Figure 4.6 (top rows) and a scaled version of folarinediate iterations is shown in
the bottom row of the same figure. Note that theaxes of the plots show the number of steps
(i.e., change of the network after updating one constratt)er than iterations. Here, each
iteration is equal t&00 steps, sincéC| = 500 and thus the four iterations are equaltin0
steps. Observe that already natjealthough having the smallest connectivity in the network,
is affected by a high variation in the case of PPO whereas#hmiation is significantly smaller
using our approach. The oscillations and the differenceaimmation becomes even more severe
when comparing nodes having a higher connectivity as itelichy node22. Our incremental
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b)

Figure 4.3: Schematic view of the trajectory (a) and the network (b) imletéh by corrupting both the poses as well
as the edges by zero mean Gaussian noise. The parametezsGHubsian noise are found in the text.

0.05 1 PPO e |
I. Our approach

0.04 | o |

003 [ “‘\‘ Ng |

™ teration

0.02 . 1

0.01 |
0 200 400 600 800

Figure 4.4: y2-error per constraint for the data set depicted in Figuregiy8n our incremental tree approach
(solid black line) and the path parametrized approach, RRREGhed gray line).

tree structure allows us to decompose the optimizationlpnointo a set of weakly interacting
problems, namely each sub-graph in the tree structure., Bhusde is less likely to be updated
by other constraints. A good measure for evaluating theaot®n between the constraints is
the average path lengthof updated nodes per constraint. For example, a networkaniginge
value for/ has typically a higher number of interacting constraintspared to networks with
a low values of. In all experiments, where we randomly generated graphsaviotal number
of constraints between aroudd000 and2 millions, our approach had a value fobetweern3
and7 (ignoring constraints between successor variables). hirast to that, this value varies
between500 and 17,000 in PPO on the same networks. This indeed reduces the comeerge
speed of PPO but does not introduce a higher complexity.
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PPO Our approach

iteration 1

iteration 5

iteration 10

iteration 30

Figure 4.5: Evolution of the network depicted in Figure 4.3 given the@mental approach (left column) and ours
(right column) for the iterations, 5, 10, and30. As can be seen, our approach leads visually to a more censist
network afters iterations than the incremental approach afteiterations.
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Figure 4.6: Evolution of typical nodes in a small data set. The first tinees depict the variation of the node
and22 for all axis (i.e.,z, y, 1)) whereas the bottom row depicts a scaled version of:th&is over the period of
2000 steps, equal to four iterations. The outcome for PPO is shaimg gray dashed lines, whereas the result of
our incremental tree approach is visualized in solid black.
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Figure 4.7: A small example that illustrates the problem of distribgtthe error in 3D. The input data that was
obtained by moving a simulated robot over a hexagon twick sritall Gaussian noise is shown in (a). The middle
image (b) show the result obtained if the non-commutativftihe rotation angles is ignored, i.e., this image shows
the result if applying the approach presented in the prevahapter. The result of our approach presented in this
section is shown in (c) which is very close to the ground truth

4.3 Distributing the Error in 3D

The reader might pose the question whether it is possiblegly ghe update rule of the previous
section to full 3D rotations. Unfortunately, this is not piide. To understand the effect of
this statement, consider the error distribution for the 2Becfirst. Here, we can distribute a
residualr®® = (r,,r,,7,)T along a chain of. nodes by changing the pose of théh node
by (r./n,r,/n,rs/n)", given the incremental (tree) parametrization. In thegkdienensional
space, however, such a technique is not applicable due toaiveommutativity of the three
rotations as visualized in Figure 4.7. In other words, canmgathe 2D and the 3D case we
have

Rop(¢y) =

(=), butin general (4.43)

\'E:
&
(v}

= 1
I

Rap(¢,0, 1) # HR3D

=1

\_/

(4.44)

BI% :I@

S
SHRSS

where R,p and R3p are the rotation matrices for the two-dimensional and taiegensional
case. Here, the rotations along they, andz axis areroll (¢), pitch (¢), andyaw (¢)).

Given the notation of motion compositiom, and its inverseg, as defined by Smith and
Cheeseman [138] and Lu and Milios [100] (see Section 2.2) wma&l¢he incremental tree
parametrization for the full 3D case (i.@; = (i, y;, 2, i, 0, ;)" as follows. The configura-
tion spacex = (xy,...,x,)T with x; = (Ax;, Ay;, Az, Ag;, Ab;, Ay;)T is calculated similar
to the 2D case (see previous section) with:

x; = p; (therootnode) (4.45)
x; = p;©parentp;), fori> 1. (4.46)

Similarly, the residual of a constraifi, j) is
rij(p) = (Pi @ dij) © ;- (4.47)

For simplicity of notation, we will refer to the homogenedrtansformation matrix of the vector
x; as X;. This matrix of sizet x 4 is build of a rotational componert,; and a translational
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component »; with

T
0 Aﬂfl T T
X = flai ta ,0=1| 0 |.tar=| Ay |,andX;'= o —Haibai )
0 1 0 1
O Azi

Using ), S(ar) short forcos aw andsin « respectively the rotation matrix is calculated as

Rpi = S(AvY;)  c(Ayy) 0 0 1 0 0 c(Adi) —S(Ad;)
0 0 1/ \—s(A8;) 0 c(Af;) 0 s(A¢;) c(Ag;)

Similarly, we refer to the homogeneous transformation matfa vectorp, as P;, and of the
observation;; asA;;. Accordingly, we can compute the residuglx) in the reference frame
of nodej (see Equation (4.47)) as

-1
= T X I xo|as (4.49)
kHeplf) K-lep)]

At this point we can directly compute the Jacobian from ttsédgal and apply Equation (4.35)
to update the network. Although the resulting Jacobian kastly | P;.;| non zero blocks it does
not have the simple form as the one in the previous sectiorcandhardly be calculated man-
ually. Even more, updating the network using this Jacobianlevlead to a poor performance
of the algorithm in case of large optimization problems. mderstand this behavior, recall that
the goal of the update rule is to iteratively reduce th®-error introduced by a constraint. In
Equation (4.35), the term;€2;; maps the residual into a variation of the configuration space
This mapping, however, islaear function. As illustrated by Frese and Hirzinger [55], the er
ror might increase when applying such a linear function seaaf non-linear error surfaces. In
the three-dimensional space, the three rotational commsn®ll, ¢, pitch,d, and yaw, often
lead to highly non-linear error surfaces. Therefore it ispematic to apply such an approach
as well as similar minimization techniques directly to Emapping problems, especially in
combination with a high noise in the observations. Furtleenthis also leads to a poor dis-
tribution of the error along the nodes, since the Jacobialsis used for approximating the
Hessian, which in turn provides us with a distribution of émeor along the nodes according to
their uncertainty.

In our approach, we therefore choose a modified update rideapMy anon-linearfunction
to map the residual into a variation in the parameter spacehwh presented in the following.
As in the linear case, the goal of this function is to computaasformation of the nodes along
the pathP;.; (of the tree) such that the error introduced by the corredipgnconstraint(é, j)
is reduced. Intuitively, we decouple the rotation and thegtation during optimization leading
to an two step update per iteration. First, we keep the ta#ioslal part fixed and update the
network given the rotational error only, then we update thedlational part, given the corrected
rotations. In the latter case, the rotational part is indejpat ofx (since it is kept fixed) and
thus the corresponding Jacobian maintains its simple famies to Equation (4.42).

To this end, we consider without loss of generality the oriif our reference system to be
the originp; of the pathP;.; = (X(i.j),, - - - » X(5),)- Thus, the orientation gb; in the reference
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system ofp; can be computed by multiplying the rotational matrices gldre pathP;.;. For
better readability, we refer to this matrices/as,, ..., Ra,. Note that all rotational matrices
of the formR,, indicate incremental rotations whereas we will omit thesikd in the case of
absolute values. Using this notation the orientatiop pWith respect to the reference system
of p; is

Rayn, = BRaBRa, - -Ra,, (4.50)

with n being the length of the path, i.e.,= |P;;|. In case of 3D rotations we need to describe
the errorB as a set of increments that can be applied as intermediaittortd. In other words,
we need to determine a set of increments for the intermedwédionsR,,, ..., Ra, of the
chain so that the orientation of the last node (here ny@eRA,.A, B, i.e., we seek a set of new
rotation matricest, , ..., Ry, With

Raa,B = []RA, (4.51)
k=1

To calculate the desired rotation matrices in the localregfee frame op;, we first have to
transform the erroB into the global reference frame, yieldidgwith

Q = R,BRY, where (4.52)

R, denotes the rotation of nodg;.;), in the global reference frame. Now we can decompose
the errorQ into a set of incremental rotations

Q = QA1:An = QA1QA2 e QAn (453)

by using spherical linear interpolation (slerp) [135] foetindividual@),. Here, given a param-
eterw € [0, 1], spherical linear interpolation is defined as sléfpw) with slerg @, 0) = I and
slerp@, 1) = @ (see also Section 2.3). This allows us to calculate the inergal rotations as

Qa, = slerp@,wy), and (4.54)
Qa, = [slerdQ,w? )]" slerdQ, wi), for k > 1 (4.55)

This ensures a rotational error distribution, since

Qavn, = Qa,Qn, (4.56)
= slerdQ, w?) [slergQ, wi’)]" slerp(@, w¥) (4.57)

— slerg@, wY) (4.58)

(4.59)

and thus it follows by induction that

Qaa, = slerg@Q,w?). (4.60)

Now, given the incremental rotational error terms in thebgloreference frame we need to
transform them into the local reference frame with the origip;. We therefore first compute
the resulting orientation in the global reference frame

R, = Qa,a Ry (4.61)
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with R, being the rotation of node;.;), in the global reference. Now, we can finally compute
the desired) (in the local reference frame) by

T
/Ak - [ ;Jaren(k)] Rk‘ (4-62)

Note that in the equation above we implicitly use

parentk) = Iiparentr), if parentk) ¢ Py.;. (4.63)

Although we can now calculate the intermediate rotatid®ls,, we left open how to obtain

the correspondingu;j , given the constrainti, j). Since we do not want to overshoot when
updating a constraint, i.e., the resulting rotation shadtiexceed the erraB, we incorporate
the learning rate and the path length when computing thesalzfj similar to theW,ﬁj in the
2D case and clamp the resulting value to a maximum. In mowgldet compute theufj with
w, €[0,1] as

-1

wy = min(LAP]) | Y d) Sl (4.64)

mePi; meP;.;Am<k

Here, d,, is the sum of the smallest eigenvalues of the informatiorrioet(2;,,, §2,,; of all
constraints connected to node thus

d, = )  minleigenvalue§;,)]+ Y  min[eigenvalueq,,)].  (4.65)

(i,m)eC (myi)eC

We found out that this approximation works well in practioe foughly spherical covariances.
Note that we can compute the eigenvalues once in the begianith store the values in the tree.
To get a better intuition about the weightg’, compare Equation (4.64) to Equation (4.39),
where the diagonal weight matri%,” is calculated for each € P;.; through

-1

s(xi, 1, 5)|Pis| | Y Dt Dyt (4.66)

mE'Pi;j

W]ij Eq.g.39)

The first part on the right hand side of Equation (4.66) sctilesweight proportional to the
path length|P;.;| and sets the direction accordingly, given the node belongkd ascending
or descending part of the path. This is equivalent to the tensh in Equation (4.64). Note
that here the learning rate and the clamping is already donae step whereas the very same
operation is decoupled from the weight calculation in thec2iBe. Comparing both equations
in more detail, we observe that the difference lies withio twints. First, the calculation of the
individual d,,,, D,,,, and second in the rightmost part of both equations. While aleutate the
sum of thed,,, up to the current nodein the first equation (Eqg. (4.64)), we use the individiral

in the 2D case only (see Equation (4.66)). Indeed, this ad¥ks like a difference, since they
follow the same principle. The reason for the different l@kke origins from the reference
system the weights are calculated in. In the 2D caseJithere calculated in the relative
reference frame implicitly containing the,,, m < k. In contrary to this, they, are calculated
in the global reference frame. Thus, the remaining diffeeebetween the weight calculation
lies within the difference betweef), andD,,,. First of alld,, is a scalar whileD,,, is a matrix.
This results from the slerp where we have only one paraméteather words, we average
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the diagonal elements db, into the scalakl,. Recall, thatD,, is approximated through the
diagonal elements of the Hessian as can be seen in EquatB).(fh more detail, thé,, are
calculated as

Dk = dlag Z J-I;nQiszm‘}‘ Z JTijijj 5 (467)

(i,m)eC (m,j)ecC

and thereforeD,, is proportional to the uncertainty, which in turn, is projamal to the eigen-
values of the covariance matrix. Thus, we observe, that tighw calculation for our modified
update rule originates from the same principle as the weiglaulation for the 2D case.

As stated in the beginning of this section, we decouple erhtion into two steps. In
the first step we update the rotational components only axibed above. Now, given the
corrected nodes (with respect to the rotation) we corregtttanslational part in the second
step. To this end, we consider the rotation to be fixed wherecting the translational part and
parametrize the tree as in the 2D case omitting the rotdtpara(see previous section), i.e. use
the vector subtraction instead of the motion compositicerafpro. Indeed, the Jacobians have
now an even simpler form, since the rotational part is canstéh respect to the configuration
and we therefore obtain

Jix) = Y Tun— Y Ty (4.68)

k+leplt] k-lepl ]

Note that in Equation (4.68) the Jacobian is not approxithbyethe right therm of this equation
but is exactly the sum of the identity matrices, which is i@ tase in Equation (4.34). It is
noteworthy, that this allows us to randomize the order ofcthrestraints in each iteration, since
we do not need to calculat®, along the tree anymore.

Given the equations above one may ask, why we introducedutlee?® optimization in the
previous section first. The reason for this is the sphericaél interpolation needed in the three-
dimensional case which is computationally expensive. Althh the approach described in this
section also works for the two-dimensional case it is abeettfimes slower than our pure 2D
version of the algorithm and we recommend the usage of thequ® approach when dealing
with two-dimensional problems. Using our approach we amn able to correct networks
containing full 3D rotations. However, it is important thtae angular change in the residual
is limited when updating a constraint in order to prevent@dlong a rotational axis [58] that
would lead to a sub-optimal configuration of the nodes (seeXample Figure 4.8(top)). Such
an error will affect any modules depending on the outcomaisfalgorithm, including mapping
and path planning. We therefore first analyze our rotatierralr distribution in the next section
and subsequently present our node reduction techniquectro8&.5.

4.4 Analysis of the Rotational Residual in 3D

When distributing the rotational error along a chain of nodles., j one may increase the
rotational value of the residual between two successivesbd- 1 andk, denoted as;_; .

For the convergence of our approach however it is inevitéidé the change of the error is
bounded. Otherwise, competing constraints could resudt flip along a rotational axis as
indicated in Figure 4.8. The top image displays the resttief requirement above does not
hold [58, 62]. The errors in the optimized graph results fiwma competing constraints, i.e.,
rotation in the opposite direction, leading to a full rodatialong the roll axis (i.e2x). The
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b)

Figure 4.8: Graph obtained from a car driving multiple times through ekjpey lot covering three floors. Different
error distributing techniques for the rotational erromutes different optimized networks. The inconsistencies i
the optimized graphs are marked by the arrows. Optimiziegidtwork and distributing the rotational error given
our previous work [58](a) and our approach described ingbddion (b). A detailed description of this experiment
can be found in Section 4.7.

bottom image of Figure 4.8 shows the result of our approadessribed in the previous section.
In the following, we analyze the evolution of the rotationesidual after distributing the error
according to our approach.

A rotation can be described in manners of a rotational axdglae corresponding rotation angle.
Given a three dimensional rotation matrix, we will refer to the axis of rotation as axis@f)
and to the angle as angle@f). According to Barrerat al.[15], spherical linear interpolation
(slerp) returns a set of rotations along the same axisgiven a weightv € [0, 1], we obtain

R' = slergR,w) (4.69)
axisOf ') = axisOf R) (4.70)
angleOfR’) = w-angleOfR). (4.71)

When distributing the rotatio@ over a sequence of poses (see Equation (4.53)), we decompose
it into a sequence of incremental rotatidfs= Qa,Qa, - - - Qa,. Given the definition of) Ay



56 Chapter 4. Tree-Based Graph Optimization

(see Equation (4.55)), we obtain

ar = angleOfQay) (4.72)
Ea. (4.59) angleOf([sIerp(Q,wk_l)]TsIequ,wk)) (4.73)

= angleOf(slerg@, wy)) — angleOf(slerg @, wi_1)) (4.74)
L (wi — wy—1) - angleOfQ). (4.75)

In the following, we show that when distributing the rotaiib error along a loop, thangleof
the residual angleOf(_, ) between two successive poses 1 andk does not increase more
than |ax|. According to Equation (4.49), the residual of a constraint- 1, k) between the
nodesk — 1 andk is

Pt = X D1 (4.76)

Since the rotational part is important we focus on the roteti component of the residual only
and ignore the translational part. Thus, we have

rot(ry—14) = RA, Ag_1,, Which leads to (4.77)
Rzk = rOt(T’k_Lk)Agka. (478)
After updating the rotation&,,, . . ., Ra, by a constraints, j), with k — 1, k € P;.;, we obtain

a new set of rotations in the global reference frame, namaly, . .., R, as shown in Equa-
tion (4.61). From these, we can recover the incrementaioota?,, , by using Equation (4.62):

» Eq. (4.62) R' R, (4.79)
. (4.6

= g ) [QALAk—lefl}T [QAliAkRk] (480)

R;}F—1QA1€R’€ (4.81)

= Ri,QaRi1Ra, (4.82)

Combining this result with Equation (4.77), we can computertaw residuat;,_, , after dis-
tributing the rotational error as

rot(rh_y,) = RE Ay (4.83)
=L (R£—1QA;€RI€—1RA,€)T JAVIIRI (4.84)
= RA R QX ROy (4.85)
= RQAH,@ A;il,kﬁ’fg sz :Pbk—lAkakj (4-86)
rot(rx—1,1) =yT =Y
= rot(re_10) Y QR,Y- (4.87)

In the equation above (Eq. (4.87)), the terﬁQ:gkY guantifies the increase in the rotational
residual of the constrairit — 1, k) between the two consecutive nodes 1 andk. Since both
Y as well ag)», are rotational matrices, and’ Q% Y changes the rotational axis but not the
angle, we finally see that the change in the residual is at moahd therefore limited, since

langleOfY"Q},Y)| = |angleOfQa,)] (4.88)
= ol (4.89)
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To this end, we have described our algorithm for graph ogttinon in the 2D and 3D case
and have shown that the change in the angular part of theusdsglbounded when updating
a constraint. However, the complexity of our approach gramth the number of nodes in
the network. In other words, the complexity of our algoritignows with the time the robot
spends in the environment rather than the space the robtwregpwhich is critical for life-
long map learning. This problem can be solved by merginghyeiandes to a single one which
is explained in the next section.

4.5 Node Reduction

Due to the nature of the optimization technique, the compl@®t our approach (per iteration)
depends linearly on the number of constraints since eacstreant is selected exactly once per
iteration. For each constraifi, j, ), we need to modify exactly those nodes which belong to
the pathP;.;. However, the path of a constraint is defined given our treamatrization. As a
result, different constraints will have different pathdéims and therefore a different complexity.
Thus, we consider the average path lengtb specify the overall complexity. It reflects the
average number of operations needed to update a single@onsiuring one iteration. Given
m constraints and an average path lengtthis results in a complexity af(m - [). In our
experiments we found thats typically in the order ofogn, wheren is the number of nodes
in the network. However, the complexity of the current aggiogrows with the length of the
trajectory of the robot rather than with the size of the emwinent the robot explored. These
two quantities (i.e., length of trajectory versus time)wrdifferent when the robot revisits
already known areas and this effect is important in the cowiife-long map learning, where
the robot is bounded to a specific environment and has to eptsamap over time. Since
our parametrization is not dependent on the sequence ofaespi.e., the trajectory of the
robot, we have the possibility of a further optimizationtuiitively, whenever the robot revisits
a known area, we do not need to add a new node into the graplathetr want to propagate
the information to already existing nodes of the networkotimer words, we assign the current
pose of the robot to an already existing node in the graph pddta the constraints with respect
to that node. Indeed, we can now even avoid adding new camistta the network in case a
constraint between the corresponding nodes already exists

Given the constrainti, j)(") = (52(;), ngl.)>, already present in the network and a new con-
straint(i, j)?) = <5§f), fo.)> between the same nodieand; we can merge both into a new one,

(i, j), made ofd;;, ;; with

Q; = )+ (4.90)
oy = 0t (e + e (4.91)

Note that this can be seen as an approximation similar tongdalirigid constraint between
the already existing node in the network and a new one reptiagethe current pose. This is
especially useful if local maps (e.g. grid maps) are useddsssince the robot can localize in
the existing map quite accurately.

Using this technique, the size of the problem does not iser@den the robot is revisiting
already known areas but rather increases with the explaredoament. Although the com-
plexity stays the same, the number of nodes and edges (aimts}rin the graph is reduced. As
our experiments in the next section will demonstrate, gefihique for node reduction leads to
a faster convergence since less nodes and constraintsceeddonsidered.
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4.6 2D Experiments

This section is designed to evaluate the properties of oproaghes described in Section 4.1
and Section 4.5. We first present the results of simulatedraxents based on large 2D data
sets and compare our approach to PPO and to Frese’s matirédaxation [56] (MLR). Finally,
we demonstrate that our method is also well suited to cople tivé sensor and motion noise
from different sources, including wheeled and aerial relast well as humans carrying sensors
around.

4.6.1 Simulated Experiments on Large Data Sets

This set of experiments is designed to measure the perfagnahour approach quantita-
tively. We compare our technique to PPO and Frese&. multi-level relaxation [56] (MLR).

In these experiments we used two variants of our approacst, fsie used our incremental tree
parametrization while keeping all nodes in the network. dBegc we used our node reduction
technique as described in Section 4.5. In the following erpents we moved a virtual robot
on a grid world. An observation is generated each time theeatiposition of the robot was
close to a previously visited one. We corrupted both nodédseaiges, by zero mean Gaussian
noise with different parameters and simulated datasetftirggin graphs with a number of con-
straints between aroungd 000 and2 million. Figure 4.9 depicts intermediate graphs obtained
by PPO and our approach at different iterations. Here, thwark consists ofi0, 000 nodes
and64, 252 constraints and the standard deviation of the Gaussiae a@s set t@®.05 in both

x, andy direction and).02 in the angular term. Although both approaches converge psym
totically to the same solution, our approach convergegiffast can be seen in Figure 4.9. In
all our experiments, the results of Frese’s MLR stronglyed&bon the initial configuration of
the nodes. Depending on the quality of the initial guess MbRverges to an accurate solution
similar to our approach as shown in Figure 4.10 (left). Qihse, it is likely to diverge (see
Figure 4.10 (right)). PPO, as well as our technique are naivast and less independent of the
initial poses of the nodes.

To evaluate our technique quantitatively, we first measthiedaverage error (i.ey? error per
constraint) in the network after each iteration. The lefage of Figure 4.11 depicts a statis-
tical experiment oveil0 networks having the same topology but different noise zatbns.
As can be seen, our approach converges significantly fastarRPO. For small and medium
size networks, both approaches converge asymptoticadppooximately the same error value
(see Figure 4.12). For large networks, however, the highbeurof iterations needed for PPO
prevented us from demonstrating this convergence expetaiihe Note that we omitted com-
parisons to EKF and Gauss Seidel relaxation because @tsain [114] already showed that
PPO outperforms such techniques. Additionally, we evallidhe average computation time
per iteration of the different approaches. These valuestaoen in Figure 4.11 (right). As a
result of personal communication with Olson, we furtherenamnalyzed a variant of PPO which
Is restricted to spherical covariances. It yields simibegaution timeper iterationas our ap-
proach. However, this restricted variant has still the saomvergence speed with respect to the
number of iterations as Olson’s unrestricted PPO techniljage that in this experiments, our
node reduction technique can speed up the computation ufatda of 20.
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PPO Our approach

iteration 1

iteration 10

iteration 50
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Figure 4.9: Result of PPO (left column) and our approach (right coluniterd, 10, 50, and300 iterations for a
network consisting of0, 000 nodes and approximatedyt, 000 constraints. The black areas in the images originate
from constraints between nodes which are not adequatelgated after the corresponding iteration.
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Figure 4.10: The outcome of Frese’s multi-level relaxation is highly éeg@ent on the initial configuration of the
nodes. Left: small initial pose error, right: large init@se error.
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Figure 4.11: The left image shows the error of our approach and the errBP@ in a statistical experiment. The
error bars have a width &fo. The right image depicts the average execution freeiterationfor networks of
different size. For the graph containihg million constraints, MLR required memory swapping and tbgult is
therefore omitted.
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Figure 4.12: The left image shows that both techniques converge asyiogiigtto the same error. However, our
approach converges significantly faster, as can be alsdrsé®aright image, which is a scaling of the left one for
the first400 iterations.
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Figure 4.13: Two maps of the Intel Research Lab in Seattle. The left mapnstcucted by using the raw odometry
data only. The map shown in the rightimaged is the resultiobtbby using our algorithm. Here, the graph consists
of approximatelyl, 000 nodes and about, 800 constraints. The execution time needed to converge waghass

1 second.

4.6.2 Real World Experiments

The experiments presented in this section are designetustrdte that our approach can be
used to build accurate maps from real 2D robot data.

In the first experiment, the robot collected data using gsl@aange scanner and the goal was
to build an accurate map, given this data. The nodes in ophgrarrespond to the individual
poses of the robot during data acquisition. The constrairgobtained in two ways. The first
set of constraints between successor nodes is obtainedr&dwrodometry. The second set of
constraints is obtained by pair-wise matching of laser esswans. The latter also allows us to
recognize previously visited locations (i.e., detect lotgsures). Figure 4.13 depicts two maps
of the Intel Research Lab in Seattle. The left one is consttlitbm raw odometry whereas the
right one is the result obtained by our algorithm. As can lemsthe corrected map (Figure 4.13
(right)) shows no inconsistencies like double corridorse hetwork belonging to this data set
contains about, 000 nodes and approximatelly 800 constraints. Our approach needed less
than1 second to converge to the solution shown in Figure 4.13 tlrigh a2 GHz standard
laptop computer.

The second experiments shows the result using the Bivosaeiaiamm the Rawseeds [19]
project. The graph was constructed using the techniqueideddn the previous experiment.
Compared to the previous data set, however, the raw odonsetityeiady quite good. The map
obtained from raw odometry is shown in Figure 4.14 (left) #melcorrected map using our ap-
proach is shown in the right image of Figure 4.14. Here, the/okk consists of approximately
7,100 poses an@, 100 constraints, and our approach took less than four secoradst@rge to
shown solution.

Finally, we show the result of our approach using the CSAlladat recorded at the MIT.
The graph consists of approximately800 nodes and abow, 000 constraints. Again, nodes
and edges were constructed as described above. Figurehtd4 the map obtained from raw
odometry (left) and after optimization using our approacghf). As in the first experiment,
our approach took less tharsecond to converge to the solution shown in Figure 4.141xigh
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Figure 4.14: The Bovisa data set from the Rawseeds project. Left: maprmatdrom network without optimiza-
tion. The right image shows the result after optimizing tregoép for100 iterations. Our approach needed less than
four seconds to converge on the graph consisting of appairiy7, 100 nodes an@, 100 constraints.

Figure 4.15: The CSail data set. The map obtained from raw odometry is stmwthe left. The right image
shows the result of our approach aft@® iterations. To converge to this solution, our approach addess than
1 second. Here, the graph consists of approximatetp0 nodes and roughlg, 000 constraints.
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4.7 3D Experiments

This section is designed to evaluate the properties of aeetdimensional optimization ap-
proach as presented in Section 4.3. We first present thasedusimulated experiments on
large 3D data sets and compare our approach to smoothing @ppimy (SAM) [39, 88]. Sub-
sequently, we present our results on partially real robtat bip using real data for different floors
of several simulated buildings. Finally, we present ouults®btained using data recorded with
a cars driving around a campus as well as a car driving meltipies through a parking lot with
three floors.

4.7.1 Simulated Experiments on Large Data Sets

The following set of experiments is designed to demonstitaerobustness and usability for
large 3D constraint networks using the approach propos&eation 4.3. In these simulated
experiments we moved a robot on the surface of a sphere and Ab@bservation was gener-
ated each time a previous location was in the close vicifiti@current pose. All observations
were corrupted with a variable amount of zero-mean Gaussigses in each translational
component (in m) and rotational component (in radians) éthimodes and edges.

The first experiment simulated a robot path along the surtdca sphere and is made
of 2,200 robot poses (nodes) ar®l647 observations (constraints). Here, our approach took
around200 ms per iteration on @ GHz standard laptop computer. Figure 4.16 depict snapshots
at iteration0 (initial configuration),10, 50, and300 for the noise parametess= 0.05, 0 = 0.1,
ando = 0.2. As can be seen, our approach yield consistent results exbe presence of high
observation noise and that even in the case of high obsenatise, our approach converged
in less than 300 iterations, which took around one minute.

In a subsequent experiment we simulated a path of a robog @alensurface of a box. In
contrast to the sphere experiment, less smooth consteamtsvailable due to sharp maneuvers
of the robot imposing an increased risk of an angle wrap+atdarror distribution in wrong di-
rection). The box data set consists20fi01 robot poses and762 observations. For optimizing
this data set our approach took arourih ms per iteration with a total 030's for 300 itera-
tions. Intermediate snapshots as well as the initial cordittan for different noise parameters
are shown in Figure 4.17.

The corresponding error curves (i.e., averaderror per constraint) of both data sets for
the different noise levels are plotted in Figure 4.18. Htre errors at iteratiom0, 50, and300
corresponding to the snapshots in Figure 4.16 and FiguieatelLhighlighted respectively.

We furthermore compared our approach to the smoothing anmbimg (SAM) approach
of Dellaert [39] using the sphere datasets. The SAM algeritan operate in two modes.
Either as a batch process which optimizes the entire netabdace (like our approach) or
in an incremental mode. The latter one only performs an apétion after a fixed number
of nodes has been added. Note that this way of incrementatignzing the network is more
robust since the initial guess for the network configuratmooomputed based on the result of
the previous optimization procedure. This has the effeat e risk of getting stuck in a local
minima is typically reduced. However, this comes with a gigant computational overhead.
The comparison between our approach and SAM is summariz&ddle 4.2. Observe, that
the batch variant of SAM got stuck in a local minima for the esghdatasets with medium and
large noise levels. In contrast to that, the incrementaivaralways converged to a solution
comparable to ours but still required substantially monajgotation time than our approach.
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Figure 4.16: Snapshots for the initial configuration (iterationand iterationd 0, 50, and300 for the sphere data
set. The three columns shows the results of our optimizatproach given an observation noisesot= 0.05
(left), o0 = 0.1 (middle), andr = 0.2 (right) in both translation (in m) and rotation (in radians)
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Figure 4.17: Snapshots for the initial configuration (iterationand iterationd 0, 50, and300 for the box data set.
The three columns shows the results of our optimization@ggr given an observation noisecof= 0.05 (left),
o = 0.1 (middle), ands = 0.2 (right) in both translation (in m) and rotation (in radians)
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Figure 4.18: Evolution of they? error per constraint for the different data sets (columasjiffferent observation
noise parameters (rows). The highlighted points mark thereat iteration0, 50, and300 for the corresponding
snapshots in Figure 4.16 and Figure 4.17.

Noise level| SAM (batch) | SAM (incremental) | Our approach (batch) |
o =0.05 119s not tested (see batch) 30 s (150 iterations)
c=0.1 diverged 270 s (optimized each00 nodes)| 50s (250 iterations)
oc=0.2 diverged 510 s (optimized each0 nodes) 50 s (250 iterations)

Table 4.2: Comparison to SAM for the sphere datasets with differergeo¢alizations.
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4.7.2 Real World Experiments

The first experiment is obtained by extending data from atrefjaipped with a 2D laser range
finder into three dimensions. We used the 2D real world datisthe Intel Research Lab
(see previous section) and constructed virtual buildingh multiple floors. The constraints
between buildings and floors are manually added but all athtr originated from a real robot.
The resulting dataset consists of roughfy 000 nodes and approximatel2, 000 constraints.
We introduced a high error in the initial configuration of theses in all dimensions which
results in no visible structure in the initial configuratiaa can be seen in Figure 4.20(top).
Applying our approach however yields an accurate resukhasvn in the bottom of the same
image. The image in the middle shows the resulting map afteterations. The final result
was obtained aftes0 iterations and needed arouBaninutes calculation time.

In the second experiment we used data recorded with animetried car at the EPFL cam-
pus in Lausanne. Using cars as robots became popular indbga® community [27, 118, 152,
158]. Here, the Smart car was equipped WitBICK laser scanners, an inertial measurement
unit (IMU), cameras, and various other pose estimationaand he robot constructs local three
dimensional maps, so-called multi-level surface maps][@&6 builds a network of constraints
where each node represents such a local map. The constratateen nodes were generated
by odometry (i.e., GPS and IMU data) and laser scan matchitigel case of recognizing pre-
viously visited locations. The dataset contains a trapgoidhich is approximatelyt0 km long
and contains several loops. Furthermore, it includes plallievels such as an underground
parking garage and a bridge with an underpass. The corrdsgpoonstraint network given
this data is shown in Figure 4.19 (top left) and the resulat®d using our algorithm is shown
in Figure 4.19 (top right). The corrected network is plottedan aerial image of the same area.
Note that the corrected network visually fits accurately ithte aerial map of the environment.
We also used this dataset to compare our algorithm to theoapprof Triebekt al. [156] that
iteratively applies LU decomposition on dense matrices, no sparsification is applied which
causes a substantial increased runtime. Here, both apy@®aonverge to more or less the same
solution. The time needed to achieve this correction, hewas several orders of magnitude
smaller when using our approach. This is visualized in Fegud 9 (bottom), where the error
per constraint is plotted versus the execution time. Node tie bottom right image of this
figure shows a magnified view for the firgi0 ms.

We also present an experiment using an autonomous car glnvittiple times through a
parking lot in Stanford recorded by Kiimmesdeal. [95]. The trajectory covers three different
levels, from the bottom up to the roof. The car is equippedh\sédveral laser scanners, GPS,
cameras and an inertial navigation system for pose estimafihe corrected trajectory obtained
as a result of our approach is shown in Figure 4.8(b) on pagEigbre 4.21 illustrates a multi-
level surface map created from the corrected constraimtarktas well as an aerial image of
the parking lot for comparison.

Up to now, all data sets were obtained using laser range scainin the following, we
present a set of experiments in order to emphasize that puoagh is a general framework for
robotic mapping and can be used with a variety of platformsgpmed with different sensors.
In the next experiment, a blimp was equipped with a down logldiamera, a down looking
sonar and an IMU. Here, the limited payload of this highly eshited system prevented us from
mounting a second camera or another additional sensorsaéria vehicle and typical images
obtained from the analog video link are shown in Figure 412p)( The network obtained
given the raw data estimated by matching visual featureRf§[16] in combination with a
variant of PROSAC[34] is shown in Figure 4.22 (bottom left)helTcorresponding corrected
network is shown in Figure 4.22 (bottom right). Black linesvibeen different nodes in the
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Figure 4.19: The constraint network corresponding to a dataset recondbdan instrumented car at the EPFL
campus in Lausanne. Top left: Trajectory of the car befotérapation. Top right: Corrected trajectory obtained
using our algorithm. The corrected network is overlayedhait aerial image of the same area for better visibility.
Bottom: The evolution of the average error per constrainswe the execution time for this data set using our
approach and the approach of Triebehl.. The bottom right image shows a magnified view of the fit§t ms.

graph correspond to constraints between those. As can be @@esystem can also be used
within embedded systems and performs satisfactory well.

In a final experiment we equipped a human with two down-loglkiameras and an IMU
mounted on a stick (see Figure 4.23 (top)) and let him walkiagdothe campus. As in the
previous experiment, the transformations (and thus thsetcaints) between images were esti-
mated using visual features (SURF). The raw trajectory abthusing this setup for an outdoor
data set where the human walked around a building is showigurdé-4.23 (middle left), and
the corresponding corrected network using our approachas/s in the middle right image
of the same Figure. The real trajectory has a length of apmabely 190 m (estimated via
Google Earth) and the corresponding network contains appsedely 1,400 nodes and, 600
constraints. Again, given the network, the convergenck tess thanl second. In each node,
we also store the corresponding stereo image recorded bgatheras. Thus, we are able to
reconstruct the map, given the corrected poses. A perspacéw of the corrected network is
shown in the bottom of Figure 4.23. The trajectory after giogj our optimization algorithm
Is 208 m long. However, given the low cost stereo system used fonieing the data has an
uncertainty of around0 cm at1 m distance to the ground, the overestimation of approxilyate
9% to the true length is within the bounds of a consistent mapreMietails about this work as
well as additional experiments can be found in our paperibatning 3D maps using attitude
and noisy vision sensors [142].
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Figure 4.20: The real world dataset of the Intel Research Lab recordeDiis 2sed to generate a large 3D dataset.
Each of the four buildings consists of four identical flooT$he top image depicts the initial configuration. The
image in the middle depicts an intermediate results andigfnt one the corrected map after 80 iterations of our
approach. Note that we also plotted constraints (gray /wetiyeen individual floors and buildings but omitted to
plot constraints from a single floor for better visibilityh& corresponding lased data is shown in black. The small
image in the bottom right corner shows the corrected mapeofitlo dimensional laser range data.
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Figure 4.21: Corrected network from a car driving in a parking lot coniagnthree floors multiple times (see also
Figure 4.8). A multi-level surface map created from the ected constraint network is shown in the leftimage. An
aerial image of the same environment is shown in the rightggna@he images are a courtesy of Rainer Kimmerle.
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Figure 4.22: The blimp (top left) and an example image obtained throughahalog video link (top right).
Bottom left: Raw odometry estimated by tracking visual feas (left). The small loops and the discontinuities
in the trajectory result from the tracking of visual feaiie all frames given the limited sensor setup. The right
image shows the trajectory obtained after applying oumaigtition algorithm using this embedded system.
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Figure 4.23: Top: the sensors used for testing our approach. We assetmmetheap USB web-cams as a stereo
pair and combined it with a Xsens MTi IMU. We mounted the IMléther with the cameras looking down-
wards on a stick and walked around the campus. Middle: Rawnetly obtained by walking around a campus
building (left) and the corrected trajectory obtained assalt of our optimization algorithm. Bottom: Perspective
view of the textured elevation map of the outdoor experinmegether with two camera images recorded at the

corresponding locations.
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4.8 Related Work

In the context of robotic simultaneous localization and piag (SLAM) we can classify map-
ping techniques according to the underlying estimatiorr@ggh. The most popular ones are
extended Kalman filters (EKF) [97, 137], sparse extendeatimétion filters (SEIF) [45, 151],
particle filters (PF) [106], and least squares error minatian techniques [100, 56, 74]. It
has been shown, that for some applications it can be alseisuffito learn local maps of the
environment only [78, 152, 166].

Using extended Kalman filters for robotic mapping definitedyongs to the oldest and most
popular attempts [138, 137, 11, 107, 98]. Here, the comdtraire modeled as linear functions
and noise is assumed to be white, i.e., Gaussian. In this taseffectiveness of these ap-
proaches originates from the fact that they estimate a duietated posterior about robot poses
and landmarks. They maintain a meaand a covarianc& of the full posterior and access of
this information is performed in constant time. Howevecgarporating a constraint is expensive
(O(N?), with N being the number of poses and landmark) and thus these appsoare not
very effective except for smalV [136].

In contrary to this the dual representation of the extendadian filter, namely the extended
Information filter (EIF), maintains the information matfix= >~! and the information vector
n = Y~ 'u. Although incorporating a constraint can be done in condtare, recovering the
posterior (covariance matrix and mean) is nowitv?) [134]. Unfortunately, this information
is constantly needed during the estimation process whyeirctinrent described from the com-
plexity of EKF versus EIF is comparable. However, the infation form of the filter bears a
main advantage: the advantage of sparsity. The informati&inix can be seen as the adjacency
graph of the network. Here, an element is non-zero if an esigegsent in the corresponding
network [45]. Since the perception range of the robot istiehi the information matrix contains
many zeroes. This is not the case in the corresponding emeaimatrix. Even more, the spar-
sity allows for faster recovery of the posterior mean ancacewice. Thruret al. [151] propose
to truncate small weights resulting from marginalizatib8][in the information matrix to speed
up computation resulting in the sparse extended informdilier (SEIF). However, is bears the
risk that the covariance estimate can become overly corifiddns problem is addressed by
Eusticeet al. [45, 160]. Here, the error bounds within the SEIF framewagka@mputed more
accurately reducing the risk mentioned above.

Unfortunately, EKF based approaches as well as EIF basewages approximate the
constraints through a linear function and thus suffer frovadrization errors. If these errors are
too big, the approaches are likely to diverge [87, 157].

Particle filter based approaches approximate a distribubioough a set of samples (parti-
cles). In the most popular approaches, particles represtatent map realizations [103, 61,
140]. These differences originate from the uncertaintyhim tnotion model. In other words,
each patrticle represents a specific realization of the matase. Thus, these approaches do
not suffer from linearization errors like the ones discdsse far and have been widely used in
the past years. However, their computational complexiopwgrwith the number of particles.
To keep this number as small as possible, &oxl. [50] compute the Kullback-Leibler distance
between the true distribution and the one approximatedigiréhe particles. This allows them
to adapt the number of particles in each step. However, cgexee of this approaches to the
optimal solution is only guaranteed, if the number of péegoes to infinity [149].

An alternative approach is to find maximum likelihood mapdd®sst squares error mini-
mization. The idea is to compute a network of relations (t@in#s) given a sequence of sensor
readings. These constraints represent the spatial coafiignibetween the robot’s poses. In the
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work presented in this chapter, we also follow this way torfolate the SLAM problem.

Lu and Milios [100] were the first ones applying least squaresr minimization in context
of robotic SLAM using a kind of brute force method. Their apgech aims to optimize the
whole network at once. Konoliget al. [92] use preconditioned conjugate gradient descent
for minimizing the error in the constraints. An algorithmsled on conjugate gradients was
also proposed by Montemerlo and Thrun [104]. In their wohleyt utilize them to efficiently
invert the sparse information matrix of the system. Thisvaid them to learn large maps using
a Segway robot. Gutmann and Konolige [74] proposed an eféeegtay for constructing a
graph and for detecting loop closures while running an imenetal estimation algorithm. Their
general four steps, namely, incremental motion estimaomsistent pose estimation, map
correlation, and optimization are still the basic ideasieéimany SLAM algorithms.

Howardet al. [81] apply relaxation to localize the robot and build a mapcdntrast to the
technique described in this chapter, these approachesingtin a step a single pose based on
all connected constraints. This can be seen as dual to agjy@eéke ours, where in each step all
(relevant) poses are optimized with respect to a singletcaing Ducketiet al. [42] propose the
usage of Gauss-Seidel relaxation to minimize the erroremtstwork of constraints. To make
the problem linear, they assume knowledge about the otientaf the robot. Freset al. [56]
propose a variant of Gauss-Seidel relaxation called nteust relaxation (MLR). It applies
relaxation at different resolutions. MLR is reported to\pde very good results in flat envi-
ronments especially if the error in the initial guess is tedi Recently, Olsort al. [116, 114]
presented a novel technique for 2D robotic mapping basetbohastic gradient descent (PPO).

Frese’s Tree Map [54] assumes a topological tree structuiteeagraphical model and en-
forces this assumption by pruning edges and ignoring smétliles in the information matrix.
Thus, only an approximation to the true map is calculatedvé¥er, since the posterior model
has a tree structure, Frese is able to perform an updaflisg n), with n being the number
of features [86]. This assumption is also made in the casasKiR's Thin Junction Tree Fil-
ter (TJTF) [117]. As in the case of Frese’s Tree Map algorjttime topological tree structure
reduces the complexity compared to EKF approaches sinearfgtusing junction trees can be
performed in linear time.

However, techniques such as PPO, Frese’s multi level rietaxar our tree incremental
network optimizer focus on calculating the most likely maym assume that the nodes and
constraints are known. Since constraints reflect data &gt we can get those using for
example the ATLAS [21] framework, the approach of Nucheeral. [113] or hierarchical
SLAM [44]. Note that these methods also globally optimize tietwork but this step can be
replaced by our optimization algorithm to make them moreieffit. In case of visual SLAM,
we can obtain such constraints by matching visual featis@sa@osed by Stedet al. [142].

In the context of three-dimensional mapping, only a few teghes have been proposed so
far [104, 88]. Howarcet al. [82] propose to map 3D urban environments by optimizing in 2D
only. Here, roll and pitch are assumed to be measured aetyieatough using an IMU. There-
fore, they avoid the problem of distributing the error ineardimensions but corrett, v, z)
and the yaw-orientation only. Nuchtet al. [113] describe a mobile robot which is able to
build accurate 3D models. In their work, the error in a loopngormly distributed along the
poses obtained from odometry. Although this techniqueipes/good estimates it can not deal
with multiple as well as nested loops.

Triebelet al. [156] described an approach for correcting the poses in3bhdir approach,
the problem is linearized in each iteration and solved ukldglecomposition. This yields to
accurate maps, both for small and medium size environmesmsceally when the rotational
error is small. However, as illustrated in the experimenédtion (see Section 4.7.2), our ap-
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proach is orders of magnitude faster than this method arslttieir method is not well suited
to build maps for large networks.

Dellaert and colleagues proposed a smoothing method cajleste root smoothing an map-
ping [39, 41, 88, 125] (SAM). Here, the poses and landmarktloos are smoothed and the
information matrix is factorized by using Cholesky decompos. This approach has several
advantages compared to EKF-based solutions. First ofladitier covers the non-linearities of
the constraints. Second, it is faster to compute. In conteaSEIFs, it furthermore provides
an exactly sparse factorization of the information mathbote that the major speed-up of this
method comes from a good ordering of the variables in theimédion matrix. Finally, SAM
can be applied in an incremental way [88] and additionallynie of the few techniques which
can be used in 2D as well as in 3D.

Grisettiet al. [59] described a general approach for optimization usinggsaNewton on
Manifolds together with sparse Cholesky factorization. yTékso propose a hierarchical variant
of their approach able to minimize the error on differentlewf abstraction [60]. In joint work,
Konolige, Grisetti, and colleagues [93] described a spe@iaant for 2D mapping. Recently,
Kummerleet al. [94] presented tp, a general framework for graph optimization which is also
able to use bearing information typically obtained whemgsiision systems.

As mentioned earlier, the work closest to our approach isvitr& of Olsonet al. [116] (see
Section 3.5). They apply a variant of stochastic gradiesteet with a novel parametrization
of the configuration space. In contrast to their approachammy a different parametrization
of the nodes that better reflects the topology of the enviemtmT his, however, leads to a faster
convergence of the algorithm. Furthermore, our approaellis to correct three-dimensional
networks and our node reduction technique allows us to ptesgding new nodes into the
network when revisiting an already known part of the envinent. In return, the complexity
of our approach grows with the size of the explored envirammather than the length of the
robot’s trajectory. In addition to the faster convergerts ts also an advantage compared to
other approaches such as PPO or MLR since it allows for difegtimap learning.

4.9 Conclusion

We presented a highly efficient solution to the problem ofresy maximum likelihood maps
for mobile robots for both the two dimensional as well as tire¢ dimensional case. Our tech-
nigue is based on the graph-formulation of the simultanémeadization and mapping problem
and applies a gradient descent based optimization schean@pproach extends the PPO algo-
rithm by introducing a tree parametrization for the nodethagraph for the two dimensional
case. We furthermore presented an update rule for distigpthie rotational error in 3D. The
tree parametrization has a significant influence on the egenee speed and execution time of
the method. It furthermore enables us to correct arbitreaplys and not only a list of sequential
poses. In this way, the complexity of our method depends ersite of the explored environ-
ment rather than on the length of the input trajectory. Tihieeed is an important precondition
to allow a robot lifelong map learning in its environment.

Our method has been implemented and exhaustively testéalam@ 3D using simulated as
well as real robot data. We furthermore compared our methadher existing state-of-the-art
solutions, namely PPO and multi-level-relaxation in the timensional case and SAM as well
as the approach of Triebet al.for the 3D datasets. In all cases, our approach convergeifisig
cantly faster than the other approaches and leads to aecuegds with low errors. Note that we
omitted to compare our approach to EKF and Gauss Seidehtgabecause Olsat al. [114]
already showed that their approach outperforms such tqubsi
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Chapter 5

Autonomous Indoor Flying using a
Quadrotor Robot

We present a general navigation system that enables a smailzed
guadrotor to autonomously operate in indoor environments. To
achieve this, we systematically extend and adapt technigeethat
have been successfully applied on ground robots. We desceb
all developed methods and present an extensive set of experi
ments illustrating that they enable a quadrotor to reliably and au-
tonomously navigate in indoor environments.

In the previous part of this work, we described an algoritiemeffficient robotic mapping. We
modeled the world as a graph where each node represents affipegobot. These nodes can
also contain additional information like the current vievage about the environment. Edges
between nodes, also called constraints, represent thialsedation between two robot poses.
In the following two chapters we describe two embedded systenvisioned to assist human
personnel. First, we describe our enabling technology foreomous indoor flying using a
guadrotor. Subsequently we describe our algorithm forandeapping based on human activity
in Chapter 6. In both systems, we employ a graph as the basicsttatture for mapping and
utilize our tree network optimizer for estimating the makely map and trajectory, given the
sensor observations.

In recent years, the robotics community has shown an inicrgasterest in autonomous
aerial vehicles, especially quadrotors. Low-cost and ksia flying platforms are becom-
ing broadly available and some of these platforms are alli& telatively high payloads and
provide an increasingly broad set of basic functionalifg® 112, 1]. This directly raises the
qguestion of how to equip them with autonomous navigatiotiteds. Whereas most of the
proposed approaches for autonomous flying [150, 36] focusystems for outdoor operation,
vehicles that can autonomously operate in indoor envirarisnge envisioned to be useful for
a variety of applications including surveillance and sbkaed rescue tasks [24]. Compared to
ground vehicles, the main advantage of flying devices is thefeased mobility.

As for ground vehicles, the main task for an autonomous flyatgpt consists in reaching a
desired location in an unsupervised manner, i.e., withaatdn interference. In the literature,
this task is known agavigationor guidance To address the general task of navigation, one
is required to tackle a set of problems ranging from staten@sion and world modeling to
trajectory planning.
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Figure 5.1: Autonomous flight of our quadrotor in a cluttered office rooithe free space around the robot is
seriously confined, imposing high demands on pose stakslifge estimation, and control. The quadrotor uses a
laser scanner (blue lines) to sense the environment. Theainesgdy acquired by the robot is shown in red. The
image in the bottom left shows the office room from a simil&wpoint as the snapshot of our navigation system.

The general principles of navigation algorithms, that hbeen successfully applied on
wheel-based robots, could in principle be transferred tadlyehicles. However, this transfer
is not straightforward for several reasons. Wheeled-badeats are inherently stable. In other
words, issuing a zero velocity command results in a smoaotkeldeation until the robot stops.
The same does not hold for flying robots that need to be agtstabilized even when they are
already at the desired location. Obviously, turning offithi@rs in this situation would result in
a crash. Even more, due to the fast dynamics of a flying vebarigpared to a ground-based one
all the quantities necessary to stabilize the vehicle shbalcomputed within a short time and
with an adequate level of accuracy. Thus, porting existenggation systems for ground robots
to aerial vehicles requires to fulfill more stringent coastts on both accuracy and efficiency.

In this chapter, we present the enabling technology forreartious quadrotor navigation
in indoor environments and describe a navigation systetndimy key functionalities, namely
localization, planning, surface estimation, map-leagnicontrol, and obstacle avoidance. Al-
though a flying vehicle moves in 3D there is usually enoughcsiire present indoors (i.e.,
walls, cupboards, ...) to describe the environment in 2Btelad of using a full 3D representa-
tion we therefore rely on a 2D one consisting of vertical dites like walls augmented with
the elevation of the floor. The advantage of this choice caetgpto the full 3D representation
is that we can operate in a large class of indoor environnmgntssing efficient variants of 2D
algorithms that work on dense grid maps instead of spaceiar@donsuming 3D methods.
Having these functionalities adapted for the 3D case woal@ither too slow or not accurate
enough given the limited time constraints to make the systafrle. To correct for odometry er-
rors, we embed the robots pose into a graph. This allows usetour tree network optimization
algorithm described in the previous chapter for correctivegmap when closing loops.

Our system is a result of an integrated hardware/softwasgdehat meets several of the
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challenging constraints imposed by small-sized flying otelsi while preserving a large degree
of flexibility. Furthermore, it can be operated at differéavtels of autonomy. It can be used to
assist a pilot by keeping the position of the vehicle whenaramands are given or it can be in-
structed to autonomously reach given locations in a knowp. tiaan additionally construct a
map on-line and correct for errors when closing a loop whylied in an unknown environment.
We evaluated our system on an open source quadrotor, thedled-Mikrokopter [29] (see Sec-
tion 5.2). Figure 5.1 visualizes our quadrotor system asdhiernal state while autonomously
flying within a highly cluttered office room.

This chapter is structured as follows. We first discuss tlgglirements of a navigation
system for an indoor flying quadrotor followed by a descoptof our system architecture in
Section 5.2. Subsequently, we present our navigation systeSection 5.3 and present an
extensive set of experiments demonstrating the capasildaf our algorithms using an open-
source quadrotor in Section 5.4. Finally, we discuss tretioel of our system to the literature
in Section 5.5 and conclude in Section 5.6.

5.1 Requirements for Autonomous Indoor Flying

In this section, we present the general problems in robagation and discuss the additional
issues introduced by a flying platform for indoor environtsen

To autonomously reach a desired location, a mobile robottitvde able to determine a
collision-free path connecting the starting and the goedtion. This task is known gsath
planningand requires a map of the environment to be known. Usually,ntlap has to be ac-
quired by the robot itself by processing the sensor measemenobtained during an exploration
mission. The task of generating the map is knowsiasultaneous localization and mapping
(SLAM). In some cases it is sufficient to perform SLAM offdiron a recorded sequence of
measurements. If such a map has been obtained, the robat tocleel aware of its position at
any point in time in order to follow the path with a sufficierdcaracy. This task is known as
localization A further fundamental component of a navigation systenméscbntrol module
which aims to move the vehicle along the desired trajecigixien the pose estimated by the
localization or SLAM module. For all the tasks described\aove also need to know the
current movement of the robot. This is knowniasremental motion estimation

Several authors proposed effective control strategietorately steer ground vehicles
with complex kinematics. Most of these approaches rely gh lfiequency estimates of the
relative movements of the vehicle obtained by integratiregwheel encoders. The localization
module, however, does not need to run at a high frequencyodine taccuracy of the odometry
within short time intervals. Unfortunately, odometry estites are often not available on flying
vehicles. In principle, one could obtain a dead reckonirtgrnede by integrating the inertial
sensors. However, the limited payload typically requiresighers to use only lightweight
micro-electro-mechanical (MEMS) devices which are a#ddiy a considerable drift. For these
reasons, one needs frequent localization updates to ingpleaffective control strategies.

In outdoor scenarios one can estimate the pose of the vdlyiflesing information obtained
from a global positioning system (GPS) and an inertial mesment unit (IMU). Unfortunately,
a reliable GPS signal is not available indoors. In the caseravthe building is equipped with
“indoor” GPS (e.g., based on ultra wide band (UWB) or indooriorotapturing), the robot is
restricted to operate in these previously prepared enwiemts only. Thus, in order to assure
maximum autonomy, the robot is required to localize itsati &uild a map with the on-board
sensors only. To detect and avoid obstacles, these sefmnrsl ®so reliably reveal the sur-
rounding obstacles.
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Figure 5.2: The quadrotor used to evaluate the navigation system islb@sa Mikrokopter. We equipped the
platform with a Hokuyo laser range finder (1), an Xsens IMU &%umstix computer (3), and a laser mirror (4).

Due to the increased risk of damaging the flying platform miyitesting, the user should have
the possibility to take over the control of the platform ay qoint in time. Finally, the more
complex dynamics of a flying platform pose substantiallyhleigrequirements on the accuracy
of the state estimation process than for typical groungtbaghicles. Although positioning
errors up tol m might be acceptable in outdoors scenarios, this is notake mdoors, as the
free-space around the robot is substantially more confilBedore presenting our algorithms
meeting these requirements, we first describe our hardwatfeqm and general system archi-
tecture in the next section.

5.2 System Architecture

Our platform is shown in Figure 5.2. It shows a MikrokopteB]2pen source quadrotor
equipped with additional sensors and computational devicEhe Mikrokopter comes with
a low level controller for roll, pitch, and yaw. Additiong/lwe equipped it with the following
components:

1. a Hokuyo-URG miniature laser sensor for SLAM and obstaabédance,

2. an Xsens MTi-G MEMS inertial measurement unit (IMU) fotiemting the attitude of
the vehicle,

3. aLinux-based Gumstix embedded PC with USB interfacesaid-i network card, and

4. alaser mirror used to deflect some of the laser beams abhenggettical ¢) direction to
measure the distance to the ground.
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The Hokuyo-URG is a laser range finder able to measure digamce5.6 m at a frequency of
10 Hz. Yet, the ability to detect an obstacle in range dependb@nolor of the sensed material
and the impact angle. We use the laser range scanner for bedlumng the distances to
obstacles in the surrounding of the robot and measuringisii@rtte to the ground via the laser
mirror. The IMU provides accurate estimates of roll andIpitip to1° at a rate ofl00 Hz, that
are directly used within our localization and mapping medul The Gumstix communicates
with the micro-controller on the quadrotor via an RS-232riigiee and reads all the sensors. It
furthermore communicates with an off-board PC over WLAN c8ithe embedded PC provides
a Linux operating system, we can develop our algorithm$oéird on standard PCs and execute
them on-board. All on-board sensing and computation deumgether weigh abog0 grams
and drain approximately.5 watts of power. The quadrotor itself consumes abi@twatts
while hovering att0 cm and is equipped with &1.1V, 3,300 mAh Lithium-Polymer battery
(LiPo). The current system has a weight of approximat®y0 g and is able to fly up ta6
minutes. Including the extends of the blades, the total spéme quadrotor i$.65 m.

Our navigation system is based on a modular architectureéhiohadifferent modules (i.e.,
incremental motion estimation, SLAM, path planning, .0renunicate via the network using
a publish-subscribe mechanism. In our current system aiteelrivers are executed on-board
while the more computationally intensive algorithms rureaiemote PC communicating wire-
less with the platform.

Due to the combination of the laser, the IMU, and the laseraniwe are able to gen-
erate two additional sets ofirtual laser measurements. The first set consists of the laser
measurements projected onto 2D, given the IMU estimateatabtl (¢) and pitch ¢). The
second set consists of all beams deflected by the laser migain, the estimate about roll
and pitch are used to compute the current distance to thendroiore formally, the laser
range scanner measures a set of distancabng thez-y plane in its own reference frame at
time ¢. Each of these distances can be represented by a homogemnmlsgﬁ in 3D space,
bt = (rf cos az, r sin ay, 0, 1)T, with a; being the angle of the individual (i.e-th) laser beam.
Let Tivu laser D€ the homogeneous transformation matrix from the IMU ezfee frame to the
laser reference frame, known from an initial calibratioagadure, i.e.,

R aser t aser
TIMU Jaser = ( 0 HV(I)U’I 0 COP{’I ) ) (5.1)

with Rivu laser denoting the3 x 3 rotational matrix (i.e., rotational offset between IMU and
laser) anttcor aser D€ING the3 x 1 translational vector from the center of rotation (COR) to
the laser, respectively. Note that the translational otietween the IMU and the laser is not
needed, since both the IMU and the laser are attached toltb&gérame which is a rigid body.
Thus, the orientation estimate of the IMU is independenheflocation where it is mounted.

Given the estimate about rdlb’) and pitch(¢") at timet, let T}, 1y be the time depen-
dent transformation from the world reference frame to th&JlMdference frame, i.e.,

(L I— ( oRatoR% ‘1) ) with0 = (0,0,0)"". (5.2)

Usingc(a), s(a) as an abbreviation fafos(«) andsin(«) allows us to writeR?; R}, as

c(0) 0 s(6") 1 0 0
RyR, = 0 1 0 0 c(¢) —s(ot) |. (5.3)
—s(0) 0 c(6) 0 s(¢') (')
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Given these transformations we can compute the positiohefrtdividual laser bearb! at
time ¢ not deflected by the laser mirror by:

L t Wt
b; = Tyorid, v * TIMU Jaser - b;. (5.4)

Consequently, the poit, of a beamb! deflectecby the mirror is calculated by the following
chain of transformations:

t t "t
hi - Tworld,IMU ’ TIMU,mirror ’ bz’? (5-5)

With Tivu miror FEPresenting the transformation from the IMU to thetual laser position that
accounts for the effect of the mirror.

5.3 Navigation System

Since roll () and pitch ¢) measured by the IMU are in general accurate ulg tave can directly
use this information within our navigation system. Thi®a# us to reduce the state estimation
problem from 6 degrees of freedom (DOF) nameelyy, z, ¢, 0, 1)T to 4DOF, consisting of the
3D position(z, y, )T and the yaw angle). However, the only sensor used to estimate these
4DOF and to detect obstacles is the laser range scanner.

In short, based on known initial calibration parameters amdhe current attitudés, 6)
estimated by the IMU, we project the endpoints of the laster the global coordinate frame.
Given the projected laser beams, we estimatg the, z, )T of the vehicle in a 2D map con-
taining multiple levels per cell. To compensate for the latlodometry measurements, we
estimate the incremental movementg:iny, ¢)” by matching subsequent 2D laser scans. Fi-
nally, we control the altitude of the vehicle and simultamgg estimate the elevation of the
underlying surface by fusing the IMU accelerometers anddik@ance from the ground mea-
sured by the laser. Accordingly, we track and map multiplelke underneath the robot within
an environment. This enables our robot to correctly mamnitai height even when flying over
obstacles like tables or chairs. To calculate a path fronttineent location to a goal we use a
variant ofD* lite [91]. While flying towards a goal, we detect dynamic olota by comparing
the current laser reading to the map which allows the robm4@an the trajectory or stop if no
valid plan can be calculated anymore.

In the remainder of this section, we first discuss our apgrdacincremental motion es-
timation. Subsequently, we present our algorithms forlleation in a known map, SLAM,
altitude estimation, and pose and altitude control. Fnalie present our algorithms for path
planning and obstacle avoidance.

5.3.1 Incremental Motion Estimation

Some tasks, like pose stabilization, rely on an accurat |oese estimate of the vehicle in its
surroundings. To this end, we can estimate the relative mewé of the robot between two
subsequent scans by using a scan-matching algorithm. S8iacattitude is known from the
IMU, this procedure can be carried out in 2D, assuming strect indoor environments. A
scan-matching algorithm estimates the most likely posédefvehiclex’ at timet given the
previousk poses<!~**~1 and the corresponding (- 1) laser measuremenké ", as follows

X' = argmax p(x' | x' ¥ iR (5.6)
x:=(z,y,7)
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Figure 5.3: The laser range scanner measures a set of distances toghstabstacles (a). The measurements can
be interpreted as a sampled approximation to the surrogrativironment (b). A grid map discretizes the world
into a set of cells of the same size. The value of a cell reflbetprobability that this cell is occupied. Here, the
color is proportional to this value with black standing farctupied” and white for “free”. The smaller the size
of an individual cell, the higher the resolution of the cepending map as can be seen by comparing (c) and (d)
versus (e) and (f). However, the storage requirements agif), with n being the number of cells per dimension

d of the gridmap.

with b* = (b}, ..., bf ) denoting the individual laser beams at timeot deflected by the mir-
ror as discussed in Section 5.2. The key idea of a scan-matethgorithm is the following.
Assuming the motion between successive laser readingsdmbak with respect to the field of
view, the current laser reading should have a high overldp thie previous one(s). However,
each overlap is the result of a relative transformation betwthe previous scan and the current
one. Thus, the transformation which results in the “bes&rap is said to be the relative move-
ment of the robot. In this case we need to address two qusstidow to get transformation
candidates and how to estimate the quality of their overlapsolve this, and therefore Equa-
tion (5.6), we use correlative scan-matching on multipeohations, similar to the approach
proposed by Olson [115]. The idea behind a correlative scatther is to discretize the search
spacex! = (z',y% ¢")T and to perform an exhaustive search in the parameter spagadar
a given initial guess. To efficiently evaluate the likelilbge(x! | x!~%!~1 b!=*!) of a given
solutionx?, we use likelihood fields [149] obtained by the most likelypmignerated from the
last observation®!~*!~1. In more detail, we build a grid map with a specific cell sizecg
the previous observations. One cell in this grid map is of six s and its value reflects the
probability of an obstacle in it. Hereg,is the resolution of the grid map, e.g., in cm. A synthetic
example of a laser reading and the corresponding grid mapdifferent cell sizes is shown
in Figure 5.3, whereas Figure 5.4 illustrates an examplelizdeéihood field computed from a
map. In this example, the likelihood field is calculated tigb a convolution of the grid map
with a Gaussian kernek; of size5 x 5. Note that a Gaussian kernel of sikex k can be
approximated by multiplying the normalizéeth line of Pascal’s triangle (transposed) by itself
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Figure 5.4: This figure illustrates a grid map (left image) and the cqroesling likelihood field (right image). The
latter is the result of a convolution of the grid map with a &sian kernel of sizé x 5.

(i.e., the outer product), which in our example is:

Ky = (1/16-(1,4,6,4,1)7) - (1/16- (1,4,6,4,1)), (5.7)
1 4 6 4 1
4 16 24 16 4
= 1/256-| 6 24 36 24 6 |. (5.8)
4 16 24 16 4
1 4 6 4 1

Recall that our scan-matching algorithm discretizes thechespace and performs an exhaustive
search within a search radius. For each of these candidatsfdrmations we can now calculate
a score (likelihood) using the values from the cells the entp of the beams fall into. Since the
values represent the negative log likelihood this scorétained by summing up the individual
values.

Thus, the complexity of a correlative scan-matcher depéneéarly (per dimension) on the
resolution at which the parameters are discretized andesdhrch range. A naive implemen-
tation of this algorithm is not adequate for our applicatioat demands both high accuracy and
efficient computation. To overcome this problem, we employuti-resolution approach. The
idea is to perform the search at different resolutions, fooarse to fine. The solutions found at
a coarse level are then used to restrict the search at a egwution.

In our implementation (see also Algorithm 2) we use a constelocity model to compute
the initial guess for the search. We furthermore performctireelative scan-matching at three
different resolutions (i.e4 cmx4cmx0.4°,2cmx2cmx0.2°, and1 cmx1cmx0.1°). We set
the search areafor the first level depending on the maximum speggl. of the vehicle and on
the frequency of the scanner as,../ f for each dimension. The search areas of the subsequent
hierarchies are calculated as the sum of the resolutioneoptaceding level plus the current
resolution. Consider as an example a maximum velocity D per second. Since we obtain
laser observations at a rateldéfHz, this results in a search areadof2 m at the first level in the
x-y plane. The search space along the yaw rotation is dependitigecaggressiveness of the
controller. In our case, we assume a maximum rotationallspegpproximately’0 degrees per
second. Thus, we obtain a search radiug.o2 mx0.12 mx0.12°. Given the most likely solu-
tions of this level, we restrict the search area around iigi guess td.06 mx0.06 mx0.06°
for the second level and so on. L&t be the number of beams. Then we need to access the
memory a total o - 72 - N times (73 - N per level). Without the multi-resolution approach how-
ever, we would need5® - N look-ups to cover the same search area. Due to the nature of th
measurement process, we obtain a more dense sampling offje., more laser beams that
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Algorithm 2 Multi-Resolution Correlative Scan-Matcher

Input: current projected laser reading not deflected by miofoe (b, ... bl )
Input: number of scan-matchers, and the individual resolutions.,,
Input: likelihood fields for the corresponding resolutiams.,, / built from lastk — 1 scans
Input: the search area= (a,, a,, a,,) and the initial guesg’ = (z*, y*, ")
1ty = (0,0,0)
2. fori=1...ndo
3 r=r;/l=(ry,ryry)

4:  T; = () // candidates found so far
5. s = minimumLikelihood // current best negative log likelihood
6: I, = (—az,—a;+1r.,—a,+2r,, ..., +a,) l/search space in
7. I, =(—ay,—a,+ry,—a, +2r,, ..., +a,) //search space in
8 Iy = (—ay,—ay + 1y, —ay + 21y, ..., +ay,) [/search space in
90 for Ax e I, x I, x I, do
10: s = calculateNegativeLogLikelihoot, . .., b}, ,, m;, X' + Ax)
11: s = s+ (m/2)- maxNegativeLogLikelihoodf;).
12: if 5 < sfthen
13: continue
14: end if
15: 5= s+ calculateNegativeLogLikelihoob(n/QH, ..., bl m X'+ Ax)
16: s; = max(s;, s)
17: T, =T, U (s, Ax)
18: end for

19:  (s7,X;) = getBestEstimaté()

20: //if the best solution is below a minimum likelihood, no sidm was found
21: //inthis case we use the initial guess for this level as tkalte

22: /I otherwise the initial guess for the next level is the ckited best solution
23: if s* > minLikelihoodthen

24: X=X

25.  else

26: X =x'

27:  endif

28: a=r; +r;y, // search area for the next level

29: end for

30: return weightedMearx;, . .., x*, GaussianKernel)

are reflected by the object) that are close to the laser scabseng all laser beams therefore
would lead to a solution biased towards these densely sanmalgs of the environment. To
limit this problem, we use only a subset of all laser beamss $tibset is obtained by choosing
for all grid cells only one from all beams that ends in thiscfe cell.

We can further reduce the overall complexity by includingeaifstic which tells us if we
can get a better likelihood than the current best one. Inrth@hen summing up the negative
log likelihoods of the beams, we can calculate in each step &fter each beam) the maximum
additional score we can get from the remaining beams. If wienet get a higher likelihood
than the current best solution in this best case, we can inatedyg stop processing the beams
for this candidate transformation and proceed with the o@e. Unfortunately, performing
this check after each beam is even more expensive in pratite¢o the additional calculation.
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approach — 4cm 2cm lcm weighted mean| unit
mean(z, y) 0.107,-0.045 | 0.105,0.060 | 0.149,-0.040 | 0.066,-0.050 [m]
std(z, ) 0.145, 0.081 | 0.148,0.088 | 0.165, 0.087 | 0.123, 0.076 [m]

mean(v,|, |v,|) | 0.146, 0.159 | 0.095,0.106 | 0.084, 0.090 | 0.075, 0.072 [m/s]
std(|v,], |vy) 0.118, 0.117 | 0.071,0.083 | 0.065, 0.072 | 0.058, 0.057 | [m/s]

Table 5.1: Effect of the scan-matching algorithm on the pose stahilitthe flying robot

However, we observed that making this calculation oncer &fédf of the beams have been
already processed results in an average speed-up of apmateky 35%. More quantitatively,
our algorithm estimates the incremental motion in less thans on average using a standard
laptop computer. In contrast to this, a single correlatw@nsmatcher at the same resolution
needs about00 ms.

We control the position of the vehicle based on the velosgigtimated by the scan-matcher.
Accordingly, the performances of the scan-matcher playjamnale in the stability of the robot.
In particular, we want to have a fast, accurate, and smoah [gss oscillations) estimate. To
get an intuition about the desired accuracy, consider am grthe position estimate af2 cm.
Assuming a sensor frequency Ui Hz this error leads to a variation @0 m/s in the velocity
estimate between two laser scans. This in turn can generatgjweommands by the controller
which reduces stability.

In our hierarchical scan-matcher, the high-resolutiomrese (i.e.,0.01cm grid size) is
affected by frequent oscillations due to the limited regohuof the likelihood field. Although
these oscillations could in general be filtered out by a lasgdilter, this type of filtering would
introduce a phase shift in the pose and velocity estimate ¢gtimated pose is in the past).
Choosing the estimate of the low resolution instead leadsslova and “choppy” reaction of
the robot, since the robot moved already for a certain digtamtil a correction is executed.

To obtain both an accurate position estimate and a smoathlsige compute the final solu-
tion as the weighted mean of the estimates of all scan-matalénhe hierarchy. The weights of
the sum lie on a Gaussian centered at the finest resolutionatet In several experiments we
found that the weighted average of the estimates is betteofutrol than each single estimate.
Typical outcomes of hovering experiments are shown in Talle The table contains exper-
imental results comparing the effect on the pose stabibipgithe estimate of the individual
scan-matchers versus our weighted mean approach. All eflestrexperiments where the goal
of the quadrotor was to hover at the same spotan height forl5 minutes. To quantitatively
evaluate our approach, we compare the mean and standaatidievn both position(z, y),
and absolute velocity|v,|, |v,|) obtained from the navigation system. To be able to compare
the values over different resolutions, we compute the on&of our weighted estimate in all
runs, but only the outcome of the specific scan-matcher id f@econtrol. It is important to
note that the mean of the pose is highly dependent on thalindlibration of the gyroscopes.
Nevertheless, we included these values for completeness.

As can be seen, using a weighted average of the differenfutes® has a positive effect
on the control loop. This originates from the fact that theghieed averaging has a smoothing
effect on the pose and velocity estimate but does not inclunyephase shift into the system.
Since we use a simplistic model of our quadrotor (constalacity), using the output of the
weighted mean (with the prediction used as the initial gdesshe search) is equal to run a
Kalman filter with a large uncertainty on the prediction. W& including a more sophisti-
caded model for the prediction would lead to better estimatsing this simplistic strategy was
sufficient for our purposes.
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5.3.2 Localization

If a map of the environment is known a-priori, pure locali@aat(in contrast to simultaneous
localization and mapping) is sufficient for estimating teeaining 4DOF of the quadrotor. We
estimate the 2D positiofx, y, )" of the robot in a given grid map by Monte-Carlo Localiza-
tion (MCL) [40]. The idea is to use a particle filter to track thesition of the robot. Each
particle represents a possible pose of the robot. Thus, wesmate the true belief of the
robot about its pose via a set of samples, namely the patigle sample the next generation
of particles given the relative movement estimated by tla@msnatcher. The update is applied
when the robot moved a certain distanfd (m in our experiments), which prevents the filter
from degenerating towards a wrong solution. In short, plrfilter-based localization can be
summarized through the following algorithm:

Algorithm 3 Monte-Carlo Localization

Input: {x!~' ... xt~1} /I set of particles at time— 1

Input: b’ //current measurement

Input: m //map of the environment

Input: v~ Ax!// velocity and relative displacement estimate
Output: {x},...,x"}

cfori=1,...,ndo
//prediction step
%! = motionmodel.sampleMotior{ ', v¢~! Ax?)
//measurement update
w; = observationModel.calculateObservationLikelihaddb?’, m)
end for
normalizeWeights(wy, . .., w,})
), xE = {x], .. %! }.sampleNewSetProportionalRef;, . . ., w,})
return {x},...,x%}

© 0NN R

First, we sample a new generation based on a proposal disbril(the motion model) accord-
ing to

X ~ p(x'[x; ", v, Ax) (5.9)

wherex! is thei-th particle, generated from its predecessor, v; are the velocities estimated
by differentiation, andAx! is the relative movement estimated by the scan matcher atttim
This step is indicated by line 3 of Algorithm 3. Subsequentig calculate for each particle
the observation likelihood, given the predicted pose. Thlsulation is shown in line 5 and the
weights are proportional to the likelihood

p(b'[x;, m) (5.10)

of the measurement. Recall thsit= (b}, ... bl ) is the current projected laser measurement,
x! is the pose of theth particle, andn is the known map (which could have also been acquired
by a different robot). Again, we calculate this value usiikglihood fields as in the case of the
incremental motion estimation. Finally, we sample a newo$egtarticles proportional to the
normalized weights as shown in lines 7-8 by employing lowarace sampling as described
in [149].
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5.3.3 Simultaneous Localization and Mapping

Our system can acquire models of unknown environments glattonomous or manual flights
by simultaneous localizing and mapping the environmen®(8). The goal of a SLAM algo-
rithm is to estimate both the vehicle position and the magefanvironment by processing a
sequence of measurements acquired while moving in theamaent. Note that a local map
Is needed until the robot is localized if the robot is runnéagonomously even when a map is
known a-priori. In our system we use the graph-based SLAMrélgn described in Chapter 4.
The idea of this algorithm is to construct a graph from the sneaments of the vehicle. Each
node in the graph represents a position of the vehicle in tk@@ment and a measurement
taken at that position. Measurements are connected by ipais@nstraints encoding the spa-
tial relations between nearby robot poses. These relatimndetermined by matching pairs of
measurements acquired at nearby locations. Whenever theresmters a known region after
traveling for a long time in an unknown area, the errors aeadatad along the trajectory be-
come evident. These errors are modeled by constraints cong@arts of the environment that
have been observed during distant time intervals and arerkmo the SLAM community as
loop closuregi.e., previously visited parts of the environment). Toae&r a consistent map we
use our tree network optimization algorithm that finds thsifians of the nodes that maximize
the likelihood of the edges. Figure 5.5 illustrates a typpmese-graph computed by our algo-
rithm. Here, the quadrotor flies a loop and re-localizes enggheviously visited environment.
Without the explicit search for loop closures, we can notedrthe error accumulated over
time as shown Figure 5.5 (left). Using our approach togethtr our tree network optimiza-
tion algorithm we are able to correct the map as shown in Ei§us (right). In the remainder
of this section we explain how we construct the graph fromcauegace of laser scans and IMU
readings. The optimization approach itself is discussetitail in Chapter 4.

Again, we restrict our estimation problem to 4DOF, sincedtigude provided by the IMU
is sufficiently accurate for our mapping purposes. Furtloeeywe assume that the vehicle flies
over a piecewise constant surface and that the indoor emaigat is characterized by vertical
structures, like walls, doors, and so on. Although trasts,boffice tools on a table or the
table itself are violating this assumption using a 2D maptillsssifficient for accurate mapping
and localization as will be shown in the experimental Sectat.2. This arises from the fact
that clutter in general is only visible in a small portion bktcurrent measurement, whereas
mapping, for example, a desk improves localization sinegeths a clear difference im-y
between a desk and a nearby wall. Thus we restrict our approaestimate a 2D map and
a 2D robot trajectory spanning over 3DQE, y, )7, i.e., we map all objects as if they had
an infinite extend along. The estimate of the trajectory is the projection of the 6D0Bot
motion onto the ground plane, along thaxis. We estimate the altitude of the platform once
the 2D position and the attitude are known, based on the gueealescribed in the next section.

We construct the graph incrementally, by adding one nddat a time. We connect the
newly added node and the previous osie! with an edge(t — 1,¢). This edge is labeled with
the relative transformation between the two measuremeantgpoted from the scan matcher
x! © x!~1, and can be regarded as an odometry measurement betweenrgve and the pre-
vious pose. Whenever the robot reenters a known region, weuenan approximation of
the conditional covariances of all nodes in that regiongisiijkstra [153] expansion starting
from the current node backwards to all previous poses. We dttempt to match the current
scan with all nodes whose uncertainty intersects the cufied of view. Finally, we add a
new loop closure edge to the graph between the current @ositid each past node where the
matching succeeds, i.e. exceeds a minimum likelihood.
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Figure 5.5: This figure illustrates our graph-based SLAM algorithm. Tibeles of the graph (robot poses) and the
incremental constraints between them are shown in grayh Batges illustrate a map when the robot reenters a
known region after traveling for some time in an unknown awWw#hout searching for loop closures and optimizing
the map, the accumulated error results in map inconsigte@a shown in the left image. Our system re-localizes
the robot in the previously known part of the environment arsrts the loop closure constraints in the graph
(additional red lines in the right image). However, thesgplalosures are not satisfied by the actual configuration
of the nodes and we therefore use our tree network optiroizatigorithm to calculate a consistent map as shown
in the right image.

5.3.4 Altitude Estimation

Estimating the altitude of the vehicle in an indoor envir@mhmeans determining the global
height with respect to a fixed reference frame. Since thecleeban move over non-flat ground,
we cannot directly use the component of the beants, deflected by the mirror. Otherwise,
the vehicle would change its global altitude when flying feample over a table by the height
of that table. Our approach therefore concurrently esesdte altitude of the vehicle and the
elevation of the ground under the robot. In our estimati@tess, we assume that the y, 1))
position of the robot in the environment is known from the 3lLAodule described above. We
furthermore assume that the elevation of the surface uhéeiobot is piecewise constant. We
call each of these connected surface regions having cdraedtdande a “level”. The extent of
each level is represented by a set of cells in a 2D grid shénmgame altitude.

Since our system lacks global altitude sensors like barermetr GPS to determine the al-
titude of the vehicle, we need to estimate the elevation haextension of the level under the
robot. To this end, we track the altitude of the vehicle oierground and map different eleva-
tions using a two-staged system of Kalman filters. Algorithdescribes our approach in detail.
The first Kalman filter is used to track the altitude and theiwak velocity of the vehicle by
combining inertial measurements, altitude measuremantsalready mapped levels under the
robot. The second set of filters is used to estimate the @evat the levels currently measured
by the robot. To prevent drifts in the elevation estimate,update the altitude of a level only
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when the robot measures the level for the first time or whertbeerobot reenters it (i.e., enters
or leaves that particular level). Otherwise, we would cany add measurement errors in the
system leading to a divergence of both the levels altitutienation and the quadrotor’s height

estimate.

In detail, the first Kalman filter has a state consisting of &itdude of the robotz, its
vertical velocityv,, and the corresponding covariance mabix Given the previous state and
current measurements from the IMU, we first predict the curadtitude of the quadrotor, as
indicated in line 2 of Algorithm 4 whenever a new measurenfiem the mirror is available.
The predicted statg?, )7 of the filter is computed as follows:

3t 21 .
( e ) = Al ( o1 ) + B'a’, with (5.11)
1 At 0.5 - A¢?
t_ t__
A_(O 1), B_< A ),and (5.12)
o= AN AYT 4+ R (5.13)

Here,a! denotes the acceleration indirection measured by the IMU at tinieand A¢ is the
time elapsed between the current and the last iteratioth&umore,R denotes the covariance
matrix of the prediction. To obtain this matrix, we measutezistandard deviation of the IMU’s
acceleration estimate along thalirection,o ., and computed:’ as

R' = BY(BYo? (5.14)
0.25At1 0.5A8 Y\
— _ 1
< 0.5AL3 A2 )UZ (.19

Although the mirror measures only a single level most of tlme tit can also happen that during
level transitions more levels are sensed. For instancen flyiag over a table it can happen that
one fraction of the beams is fully reflected by the tabletome beams are partially reflected by
the tabletop and partially by the floor (which results in a sugad value somewhere between
the two objects), whereas the remaining beams are fullycteflieby the floor. Not taking into
account these effects would result in wrong altitude edeséor both the robot and the levels.

Since the beams deflected by the mirror can measure more tigale\el simultaneously,
we need to cluster them into neighboring sets. Each of thetsasassumed to originate from a
single level and is parametrized by the mean and the covarianatrix of the beams in the set.
Let h be the set of parameters of these measurements. Based ordneipn of the vehicle
posex‘*! and the measuremerliswe compute the expected elevations of the levels unddrneat
the robot (line 5)L. = (L4, ..., Lx). We then match the projected measurements of the level
altitude with the levels already present in the map. Sineectirrent 2D poséz?, v, v is
known, we search in the current neighborhood of the map favel I’ whose elevation is
closer than a thresholy to one of the predicted elevations (lines 7-13).

If such a level is found in the local neighborhood of the cotneose, i.e., if the current
measurement falls into a confidence region of the predicti@assume no change in the floor
level and can calculate the updated statev!) for the altitude and the vertical velocity. Let
L* = N (z; ur+, o1+ ) be the Gaussian pdf representing a level consiting of titeddt estimate
w; (mean) and standard deviatiop. Let furthermoreh* = N (x; up+, 0p,+ ) denote the Gaussian
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Algorithm 4 Multilevel-SLAM

Input: beams deflected by mirror at timeh’ = (hj, ..., hl)
Input: current multilevel mapM
Input: current statex! = (2, 4!, 2, vt af, 3T

A DA DWW WWWWWWWWNDNDNDNDNDNMNMNMNNNNM_,ERPRPEPRPRPEPRPERPRPRERE

M update map
. [ new levels
for LeL,(L,-) ¢ C'do

Il update height estimate and measurements

X't = predictStatet’)
h = clusterHeightBeamk()
I predict possible level measurements R
L= (Ly,...,L;) = predictMeasuredLeve&{™, h)
C' = () // the set of candidates
for L € L do
I/l does the measured level already exist at the currentitocat in the local
/Il neighborhood+Ax, +Ay)?
if 3L € M(z! + Az, y' + Ay) : |L — L'| < 6, then
C'=C'U(L,L)
end if

. end for
- if C' £ () then

/ measurement update of the filter R
(x!T1 L, C') = updateStateAndLevek(™, L, C, M)

. else

i+l — gt

A~

L=L

:end if

M(z',y') = M(a",y") U L

. end for
. I level exists but was not found in previous time stepgmeasurement update for this
. Il levels in the map

. for (L, L'y € C', (-, L') ¢ C*"! do

updateLevelinMag¥{1, (L, L))

: end for

. I/ level was found in the neighborhood, but is not preserft@turrent location
. Il — extend level to current pose in the map

for (L, L) € C', L' ¢ M(z*,y") do

M(z', y') = M(a",y") U L/

: end for
. /] search for loop closures and update map
:for L) € M(2',y"), L), € M(2" + Az, y" = Ay) do

if L), # L, and|L} — L | < d, then
mergeLevel§M, L), L) // see Equation (5.21)
end if

. end for
- return xtt!
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of a virtual measurement. This virtual measurement is abthfrom the laser beams assumed
to be reflected by the levél* and the uncterainty of the laser sensor. Then, we can cortipite
Kalman Gain K* as

K' = SIDT(DE'DT 4+ QY with (5.16)
D = (1,0), and (5.17)
Q" = o07.+ 0. (5.18)

Subsequently, we can compute the update of the state by

(QZ;) - <§£)+Kt((ﬂi+%)—l)( )) (5.19)

Y, = (I—K'D)S, withl = ( L0 ) . (5.20)
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If more then one level was found, we first merge the levelisume estimates and corresponding
beams into one single measurement (similar to Equatioi)&€the end of this section) and
update the state with the corresponding virtual measurereading. Since the estimate of the
global altitude was updated, we also propagate this infoomdo the estimate of the current
measured leveld,, underneath the robot.

However, if no level was found, i.eC = () in Algorithm 4, the gap between the current
estimate and the measurement is assumed to be generated lbpst ane new floor level and
thus, the prediction of the filter is the best estimate of tneent altitude (lines 14-20).

Once we have an updated estimate of the altitude and thealarélocity of the vehicle, we
can update the elevations of the levels in the map. This is dgra second filtering stage where
we use the current estimate for the altitude and the measumtsrof the current levels to update
the multi-level map (lines 21-43). We assume measuremenfaliing into a confidence region
to be generated by a new floor level. These new floor levels eatirbctly included into the
map, as shown in lines 22—25 in Algorithm 4. For all measurgsalling into the confidence
region of a level in the map, there exist two possibilitiesthé&r this level was already found
in the previous time-step, i.e., the robot is (1) flying oves table and thus observed the table
already before, or (2) it is currently entering or leaving tparticular level. Unfortunately, we
cannot update the level’s state in the first case, since thiddiead to a divergence of the filter
as already mentioned in the beginning of this section. Irswnd case, however, we can use
the current altitude estimate in order to update the coomsipg altitude of the level in the map
(lines 26—-30). Here, each elevation of a level is trackedrbindividual Kalman filter and the
update equations are similar to the Equations 5.11—-5.20.

Since we explicitly store objects in 2D with an extenti#y rather than by individual lev-
els per cell, we seek for levels present in the neighborhddtleomap, explained by one of
the measurements currently obtained. If such a level isddand not present at the current
location), we extend this level to the current cell, as showimes 33-35.

Note that the robot observes only a limited portion of theartying surface. Thus it may
also happen that the robot “joins” the surfaces of diffetem¢ls to form a new one. Figure 5.6
illustrates this situation. Initially two levels correspbing to a chair (Level 1) and a table
(Level 2) are identified (a). The robot then leaves the takleirid, makes a turn, and flies
over a different area of the same table. Since Level 2 is ngipe in the neighborhood of
the current pose, our system creates a new level (for the &g, noted as Level 3 in (b).
Finally, the quadrotor continues to the originally coveegda of the table that introduces an
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c) - d) [

Figure 5.6: Example of level joining during the estimation of the altituof the vehicle and of the elevation of
the underlying surfaces. Each level is represented as d sehtiguous cells in the 2D grid that share the same
elevation. The robot starts exploring an office environmémitially it recognizes two levels (Level 1 and Level
2), corresponding to a chair and a table (a). Subsequentligs away from the table, turns back, and flies over
a different region of the same table (b). This results in tleation of the new Level 3. Then the robot keeps on
hovering over the table until it approaches the extent oEL2wvhich has the same elevation as Level 3, originating
from the same table. This situation is shown in (c). Findtg robot enters Level 2 from Level 3. Our system
recognizes these two Levels to have the same elevation. réiogty, it merges them and updates the common
elevation estimate (d).

intersection of the current Level 3 and the previously gatesl Level 2. As a consequence, it
joins Levels 2 and 3 (see (c) and (d)).

When two levels/; and L}, having altitudeg:; and;, and covariances? ando? are merged
(lines 37-41), the Gaussian estimaféx; 11, o) of the joint level has the following values:

2 2 2 2
Okhj + 051k ot
=5 0= (5.21)
o; + o o; + o

To summarize, we store a level as a set of 2D grid cells reptiegethe area covered by the
corresponding object. First, we estimate the current he&ftihe robot given the known levels
in the multi-level map. In a second step we update the mapngive estimated altitude of the
robot. Here, a level is constantly re-estimated wheneevéhicle enters or leaves this specific
level, and the data association is resolved by the kn@wp, /)™ position of the vehicle. Fi-
nally, measurements not explained by any level preseneimiip are assumed to be generated
by new levels that are then included in the map. Given thenigcles described so far we are
able to estimate the current pose of the robot up to an accafalee finest resolution of the grid
map (.01 m in our case) and can now take care of the high-level contrabkng autonomous
flights.
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Figure 5.7: Our test bench for learning a mapping between a command armbthesponding angle. This simple
device allows for fixing one axis of the quadrotor and motitpthe other one using the IMU.

5.3.5 High-Level Control for Pose and Altitude

The high level control algorithm is used to keep the vehialthe current position. The outputs
of the control algorithm are variations in the roll, pitctaw; and thrust, denoted respectively
asuy, up,uy, andu,. The inputs are the position and the velocity estimates rgrfiom
incremental scan matching. A variation of the roll resuttsivariation of the acceleratian,
which in return translates into a motion along ghexis. Analogously, a variation in the pitch
finally results in a motion along the-axis and a variation of the thrust results in a change in the
vertical acceleration. We separately control the indigideariables via proportional-integral-
differential (PID) or proportional (P) controllers. Singeour case all control commands are
dependent on the current pose estimate, our high levelaontsdule runs at0 Hz, since the
laser scanner provides measurements at this rate.

Note that the Mikrokopter (as most commercially availabkfprms) is equipped with a
low level controller for roll, pitch, and yaw. Thus we do naive to take care of the control
of the individual motors. Instead, we need to calculate @ypate control commands resulting
in a desired angle or thrust. In our particular case, the &wellcontroller of the Mikrokopter
guadrotor runs ai00 Hz. Since commands for the yaw on common platforms deterimime
fast the quadrotor should turn and not how far, these pammetflect the users wish of the
robots aggressiveness with respect to the yaw rotationomtrast to this, commands for roll
and pitch result in a desired angle for which independentpimgpfunctions must be learned.
In order to learn the mapping for our quadrotor, we fixed orie akthe vehicle to an external
frame allowing the vehicle to rotate along the other axiy.ovle learned the mapping function
by monitoring the current angle measured by the IMU comptoélde sent command. Our test
bench for learning this mapping is shown in Figure 5.7.

During an autonomous flight, the computed commands are s$esttlg to the micro-
controller via RS 232 which is in charge of the low level cohfroll, pitch, and yaw) of the
platform. For safety reasons, the user can always conteol¢hicle via a remote control and
our system fuses the commands from the user and from thegmodduring our experiments,
we allow the programs to perturb the user commands2y26. In this way, if one of the con-
trol modules fails the user still has the possibility to $afend the vehicle immediately without
needing to press a button first.

In particular, we control the pitch and the roll by two indedent PID controllers that are
fed with thex and they coordinates of the robot pose. The control function ia the following:

Up =kyp - (x —2) + k- ey + kq - vy (5.22)
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Herex andz* are the measured and the desitedositions,v,, is the corresponding velocity,
ande, denotes the error integrated over time. The contrgl i; analogous to the control in
Note that the integral part could be omitted (i/e.,= 0), but we have observed an improved
hovering behavior if a small; is used. This originates from the fact that in our case origger
values can be transmitted to the micro controller althohgidiesired command is a float value.
The corresponding valuds, k;, andk, were estimated by searching in a predefined parameter
space in an extensive set of real world experiments. Th&oelaetween the proportional part
k, (acceleration) and the differential pagt(deceleration) was manually adjusted in such a way
that the robot’s maximum velocity does not excded/s. We also took special care during
parameter fitting in order to not overshoot while approaghine desired goal location. We will
show in the experimental Section 5.4.4 that using this sgtipimodel is sufficient for keeping
the desired position im andy direction up to+0.2 m.

We control the yawy), by the following P controller:

uy = ky - (Y —¢7). (5.23)

Herey andy* are the measured and desired yaw apds the control input, whereas, reflects
the desired rotational speed of the robot. Even without aremental and a differential part,
this control is able to rotate the quadrotor to the desirgdeawith an error of less thazf.

The altitude is controlled by a PID controller which utilizéhe current height estimate
the velocityv,, and the current battery volta@g respectively. The contral, is defined as

u, = offsetVoa(t)) + kp - (2 — 27) + ki - €2 + kq - vs, (5.24)

with k,, k; andk, being the constants for the P, I, and D part respectively, cafset Via(?))
denotes the thrust command offset given the current batigltgge Vpo(t) at timet. Here

z* denotes the desired height aniddenotes the integrated error. Including a thrust command
offset allows us to treat the system as stationary, andftbrerto use constant coefficients for the
PID controller. We learned the function off§gf(¢)) by monitoring the thrust and the battery
level of the vehicle in an expectation-maximization fashioMe started with a PID control
without offsetV;a(t)) and recorded the computed thrust command required to keequthent
altitude during several test flights. For each battery 1&ygl(¢) we then computed the average
thrust command used to keep the current altitude. In sulesgdlights we used this offset as
an initial guess for offsél,a(t)) and repeated the experiments resulting in an refinement for
offsetVha(t)) until no major change in the estimated offset appeared.

To sum up, we can now create maps of the environment duringsioniand use the control
algorithms described above to let the quadrotor autonondlydo a predefined goal location.
However, up to now we assume a direct path of flight towardgta. Since this assumption
does not hold in indoor environments (e.g. flying around aneQr we need path planning
techniques. This allows us to compute a valid trajectorygir@drotor has to follow in order
to reach the desired goal location. Furthermore, this nesdbuld be able to react quickly to
appearing dynamic obstacles and force the robot to eithead aliem (if possible), or to stop
when no valid plan can be computed anymore. In the next seatie describe our modified
version of the popular D* lite algorithm used within our ng&iion system.

5.3.6 Path Planning and Obstacle Avoidance

The goal of the path planning module is to compute a path flecurrent location to a user
specified goal location. This path should satisfy one or noptmality criteria and should
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Figure 5.8: Grid map of the environment (left) and the corresponding o@p (right). The darker a cell the higher
the cost for traversing it. Black cells indicate obstaclésmfinite traversability costs. By using this cost furcti

the robot prefers to traverse regions with a high clearamdghter cells). We model the quadrotor as a point mass
and extend all obstacles in the gridmap by half of the quadsosize plus a safety margin reflecting the robots
uncertainty in pose stabilization. Therefore, the obstaui the right image are thicker than in the left one.

be safe enough to prevent collisions even in the case of shsalirbances. Safety is usually
enforced by choosing a path that is sufficiently distant ftbmobstacles in the map. Finally,
due to the increased degrees of freedom of a flying vehiclgpeoead to a ground robot, the path
should be planned in 4DOF space (ife:,y, z,v)") instead of 3DOF (i.e.(x,y,)’). In our
system we use D* lite [91], a variant of th&" algorithm that can reuse previous solutions to
correct an invalid plan rather than recomputing it from sdraSince directly planning in 4ADOF

is too expensive for our system, we compute the path in twesewutive steps. First, we use
D* lite to compute a path in the—y—z space, but we only consider actions that move the robot
in 2D spacer—y. For each(z, y)T location we know the elevation of the surface underneath the
robot from the multi-level map. This known elevation is usedletermine a possible change
in altitude the robot would have to take when moving to a ngadil. A change in altitude is
reflected by increased traversability costs proportiom#i¢ distance in the-direction. In other
words, we only allow the robot to fly over obstacles but notarnéath. Furthermore, the cost
function of a statéx, y, 2)” of the robot depends on the distance of that location to theesk
vertical obstacle in the map. The quadrotor has a quadragipes To simplify path planning,
we model it as a point mass in the cost map but extend all desthy half of the quadrotor’s
size and an additional safety margin reflecting the posertaingy during autonomous flight.
For reasons of computational complexity, we use the sanodutésn for the distance grid map
as in the first level of the scan-matcher (i@0)4 mx0.04 m). An example of a map and the
corresponding cost map is shown in Figure 5.8.

If there exists a valid path from the current location to tlealg the technique described
above will return the optimal path with respect to the cospmahe computed trajectory is a
sequence of neighboring grid cells and we could in prindipliew this trajectory independent
of the current yaw angle. However, since the laser scanrezading forwards, it is desirable
that the robot turns towards the direction of flight first whallows us to detect dynamic obsta-
cles. On the other hand, we want the quadrotor to performlsnaleuvers, like flyind0cm
backwards, without performing a rotation first. Therefoeamgment each cell of the trajectory
with a computed) component. To achieve the behavior mentioned above, wedinspute the
desired angle that would result in flying forwards with regge the local frame of the robot.
In contrast to this, we compute penalty costs for not turtavgards the next cell in the trajec-
tory, proportional to the difference of the angle. Tradiffigloe costs of rotation versus costs of
moving to the desired cell without rotating first allows tlodot to perform pure sidewards or
even backwards movements and thus prevents the vehiclegeoforming unnatural maneu-
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vers. We furthermore re-use the already existing solufoten) whenever possible. Although
we can compute a new plan after a new state estimation isablaifi.e., each00 ms), we do
this only when the previous one has been labeled as invahic dan happen for two reasons.
Either the robot detected dynamic obstacles blocking higeatipath or the previous plan was
already used for a certain period of tima# = 500 ms in our implementation). The latter
constraint enables us to correct for detours in the trajgdtat have been introduced to avoid
obstacles that are no longer present. As stated above, we gi$eé resolution oft cm in our
implementation. With these settings, the planner requbesit50-80 ms to compute a typical
10 m path from scratch. Re-planning can be done in less thams.

Dynamic obstacles are detected by considering the endpaiitite laser beams that are not

explained by the known map. This allows us to detect dynatmstaxles very fast and is known
in the literature as background subtraction. Each detabyadmic obstacle is enlarged with a
safety margin ofi.5 m and the cells in the map are augmented with infinite trabdisacosts.
In this case, our planner either computes a detour or retusrgan if there does not exist a
valid trajectory to the goal anymore. In the latter casefiises the quadrotor to stop moving
and hover at the current location. On the other side, we nepcibe the costs for traversing a cell
when it is not occupied by a dynamic obstacle anymore. Tlhsvalus to recover a trajectory
and continue the mission.

5.4 Experiments

In this section we present experiments that show the pedoces of each of the modules pre-
sented in the previous section, namely: localization, SLAMiIti-level mapping, autonomous
pose stabilization, path planning, and obstacle avoidaAdemodules have been intensively
tested under real world conditions and most of the modulee aetive during all of the numer-
ous (> 50) live demonstration. However, for better readability, wdl describe the outcome
of a typical experiment for each module only. At the end o§ thection, we will also show
the results of an experiment where the sensors of the quaidselre powered by a fuel-cell
prototype. Videos of a series of different flights can be fibon the Web [123].

5.4.1 Localization

Using 2D grid maps for localization enables our system taatgewith maps acquired by dif-
ferent kinds of robots and not necessarily built by the flynedicle itself. In this section we
present an experiment in which we perform global local@abf the flying quadrotor in a map
acquired with a ground-based robot. This robot is equippild & Sick LMS laser scanner
mounted at a height of approximatedy cm. In this experiment, the robot autonomously kept
a height of50 cm +10 cm and we employed, 000 particles in the filter for global localization.
Given this number of particles, our current implementategquiresiO ms per iteration in total
on a standar@ GHz laptop, including the incremental scan-matching také$ aboubs ms on
average. Figure 5.9 shows three snapshots of the localizptocess at three different points
in time. In each of the snapshots the green (small) circleatds the current true pose. In this
case, the true pose was obtained by manually matching timetesdhe map. The blue circle
indicates the current estimate of the filter and the higléidh{pink) part of the environment is
the projection of the current laser measurement with reéspehbe location of the robot as it is
estimated by the filter. Each small black dot surrounded bytéyfree space represents a par-
ticle. The top image depicts the initial situation, in whitle particles were sampled uniformly
over the free space. After approximatelgn of flight, the particles start to focus around the true
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Figure 5.9: Global localization of our quadrotor in a map previously @ocgd by a ground-based platform
equipped with a SICK LMS laser scanner mounted at a heiglit&f. Here, the quadrotor kept an altitude
of 0.5 m+0.1 m. The blue and the green circle highlight the current egBrothe particle filter and the true pose
respectively. The highlighted part of the environment kpireflects the laser measurement projected at the pose
estimated by the filter. Particles are shown as black dotsmihe free space. Top: initial situation. Hebe()00
particles were employed and sampled uniformly over thespeee. Middle: after approximatelym of flight the
particles start to focus around the true pose. Bottom: aftproximatelys m of flight the quadrotor is localized.

pose of the robot (see middle image). Here, already mosegddirticles originally located in an
office room have been replaced by particles within the corridhe bottom image depicts the
situation after approximatelym of flight. By flying this distance, the robot collected enough
distinct information in this experiment to globally locadi itself. Throughout all experiments
carried out in this environment, it took in average abbuitm+2.3 m until the filter converged
to a solution with an average error #1f).05 m (due to the discretization of the map).
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Figure 5.10: Map of on office building built with our approach using the dr@or. The labelsd—4 reflect the
locations of individual markers used for evaluating theuaacy of our mapping approach. Red arrows indicate
the pose of the corresponding camera images. The clutt@eibdttom of the map originates from the seating
containing horizontal slots (see bottom right image).

5.4.2 Simultaneous Localization and Mapping

We also evaluated the mapping system by letting the quadiigtéour loops (approximately
41 m each) in a rectangular shaped building with an approxircatgdor size ofl0 mx12m
(outer walls). The result of our SLAM algorithm is shown irgkre 5.10. To quantitatively
evaluate the accuracy of our mapping system we placed nsaokethe floor (labeled, . . ., 4)
and manually landed the quadrotor close to the markers. BEpeimFigure 5.10 also contains
the locations of the markers and is annotated with four remhas. They reflect the approximate
origin of the taken camera images in order to give an impoessi the environment.

Since we never perfectly landed on the predefined markersameially moved the quadro-
tor the remaining centimeters to match the predefined sgtiis. enables us to measure three
types of errors: the re-localization error, the absolutsitmming error, and the error in open-
loop. The re-localization error is the difference betwdendurrent estimate and the estimate of
the same real world pose in the previous loop. The error imépep is the re-localization error
without enabling graph optimization. The absolute errdhésdifference between the estimated
pose and the ground truth. To measure the absolute error weal\ameasured the locations
(with respect to the origin set to markér of the markers and compared it to the positions es-
timated by the robot when landing on the corresponding spiable 5.2 shows the manually
measured and the estimated poses of the markers for all. Iégpsan be seen, both the relative
error between the individual loops and the global pose egiim with respect to the manu-
ally measured ground-truth have a maximum error ain. In this experiment, the incremental
mapping during the first loop was accurate enough €¢m error) thus the optimization did not
improve the map at all. However, when ignoring the first lamyr, optimization algorithm leads
to a corrected map similar to the one of the first loop. Noté¢ diaubsequent loops were also
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marker | loop1l | loop2 | loop3 | loop4 | ground-truth
1 1.11m | 1.11m| 1.11m | 1.10m 1.11m
Y1 -7.50m | -7.51m | -7.50m | -7.50m -7.50m
To -6.21m | -6.2I1m | -6.21m | -6.21 m -6.21m
Yo -921m | -9.2Im | -9.21m | -9.21 m -9.21m
T3 -7.85m | -7.85m | -7.85m | -7.85m -7.85m
Y3 -3.83m | -3.83m | -3.83m | -3.82m -3.82m
Ty -0.0lm | -0.0Im | -0.01m | -0.0I m 0.00m
n -0.00m | -0.00m | -0.00m | -0.00m 0.00m

Table 5.2: Estimated and manually measured locations of the markethddlight containing four loops in total.
Note that the quadrotor re-localized in the existing majdoofi the previous loop(s) during the subsequent ones.

marker | loop1l | loop2 | loop3 | loop4 | finestresolution
X4 -0.01m | -0.35m | -0.08 m | -0.17m
0.01m
Ya -0.00m | 0.12m | -0.07m | 0.04m
Ty -0.42m | -0.59m | -0.36 m | -0.64 m 0.02m
Y4 0.20m | 0.23m | 0.11m | 0.33m
T4 -0.91m | -0.59m | -0.54m | -0.60m 0.04m
Ya 0.28m | 0.38m | 0.29m | 0.29m

Table 5.3: Comparison of our incremental SLAM (without map optimipatii.e., incremental SLAM) for each
loop using different grid resolutions at the finest level of hierarchical scan matcher. Each scan-matcher consists
of three levels, with the second level having twice the gesofution as the finest level. The top level has a grid
size equal to four times the finest level.

re-localized in the existing map. We therefore also evalligach loop independently of each
other without optimization. The results of the individuabp flights for marke# (origin) are
shown in Table 5.3 (first row). The worst flight (2nd loop) résd in an error of approximately
0.37m total distance to the origin. To get an additional intuitebout the effect of the incre-
mental SLAM algorithm we also evaluated the effect of usiiferent grid resolutions at the
finest level of our hierarchical mapping approach on the mayuof the individual loops. The
outcome of this experiments can be seen in the second awldrttwr of Table 5.3. As can be
seen, using a cell size 6f01 m yields the best accuracy throughout this experiment.

Recall that we assume the robot is operating in indoor enmeonts build of vertical struc-
tures like walls, cupboards, and so on. This simplificatibowes us to treat the SLAM problem
in 2D and estimate the incremental motion in less thams. One may now imply, that this
simplification allows us to fly in highly restricted indoor@rmonments only, since the SLAM
accuracy could drop rapidly when flying at different levelsatiitude. As already mentioned
earlier, our approach will not work satisfactory in extréyneuttered environments, like, for
example, in a forest, but indeed provides accurate resut{gical indoor environments. How-
ever, although the presented SLAM algorithm is carried o@f», we can always re-project the
data into 3D given the estimated 2D pose. To emphasize thaimplification yields accurate
3D maps we performed additional experiments. In the firsegrpent, we let the quadrotor
hover around the origin and occasionally changed the détitesulting in laser measurements
taken at different heights ranging frodm up to1.70 m. The accumulated 3D point cloud
given the estimated pose of the SLAM approach is shown inrEigull (top). Here we can
already see, that our motion estimation algorithm yieldsueate results since there are no in-
consistencies present in the point cloud like, for exangeple walls. Even more, we can use
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Figure 5.11: This experiment was performed to illustrate the accuracguwfSLAM algorithm. Although we
assume structured indoor environments and thus projedateeinto 2D, the estimated pose is accurate enough
to reconstruct the three dimensional environment (tophevit any inconsistencies like double walls. Even more,
we can detect typical objects in the environment previobsiid of data gathered by ground robots. The bottom
image depicts the situation for detecting the object “chasing the approach of Stedet al. [144].

this 3D data to detect objects in the environment. To achiileise we applied the object de-
tection algorithm proposed by Stedsral. [144, 72]. In their work, individual objects-models
like a chair are learned from high density laser data. Thia das obtained by a wheeled robot
equipped with a Sick LMS laser scanner mounted on a parniilt A 3D scan is obtained when
the wheeled robot stays at the spot and uses the pan-tilicucitver as much 3D space as pos-
sible. Since our quadrotor is not equipped with a pan-tiit, uve simulated the data acquisition
by changing the current altitude when hovering around theesgpot. The bottom image shown
in Figure 5.11 depicts the outcome of the matching for theabjchair’. Here, both chairs in
the environment were correctly detected and the correspgndeasurements are overlayed
with the high density point clouds of the chair object. As &nseen, our pose estimation is
accurate enough for object detection even though the asgumgs how the data was obtained
is highly violated (i.e., fixed position and pan-tilt unitrges freely floating quadrotor).

The second experiment was performed in order to test if tbaraalated 3D point clouds
are accurate enough for place recognition. We manually flewquadrotor within an office
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Figure 5.12: 3D map of our office environment acquired by the quadrotoe fEttangles labeled . . ., 23 mark
the individual locations where the quadrotor recorded a &h sy occasionally changing its altitude. The blue
part of the rectangle reflects the front and the red part semits the rear of the scan position, respectively.

environment. Again, once in a while we occasionally chantjedaltitude while hovering
around the same spot. We also turned the robot by 180 degreeddr to obtain a 360 degree
scan. The whole data set consists of 23 scans, each recoadegdi@ne spot. The map obtained
using our SLAM module is shown in Figure 5.12 whereas Figul& and Figure 5.14 show
the 3D scans acquired at the individual locations.

To detect if two scans were recorded in the same area, wexXtracenormal-aligned radial
features (NARF) [146] for each 3D measurement and match tigesest the features from each
other scan. Since each NARF encodes a full 3D transformat®malao estimate the relative
transformation between the two scans. Based on an observabdel of the laser scanner
we now compute a similarity value between different scansgrgthe matched NARF’s and
the estimated transformation. Intuitively, the computatlig reflects the confidence that both
measurements were recorded in a local vicinity. Note thatsha brief description of the whole
algorithm and we refer to [145, 72] for a detailed descriptio

Each scan-pair yields a confidence score between 0 (no gigjiland 1 (perfect match).
The ground truth confusion matrix representing this vaigeshown in Figure 5.15 (top left)
together with some examples of matches. The confusionxmaamputed by our approach is
plotted in Figure 5.16 (left). In both plots, white areaseefla confidence of O whilst black areas
represent the value 1. Dark cells not located at the diagtesdribe estimated loop closures,
I.e., different scans acquired in the same area similardb ether. Figure 5.16 (right) plots the
recall rate, the number of true positives and the numberlsé faegatives with respect to the
maximum distance between individual scan. For example om@ctly recognized9 out of 46
loop closures (i.e., recall rate 06f75) for which the distance between the scan-pairs is at most
1.5 m (as measured by our SLAM system). Due to the limited ranghefaser scanner the
overlap between individual scan drops rapidly the furtiveayathe scans are from each other.
This effect can be seen in the plot starting from a distan@awf The recall rates, however, are
similar to those where data was obtained with wheeled radmpigpped with a SICK LMS laser
scanner mounted on a pan-tilt unit (see [145]).

As can be seen from these experiments, our SLAM module yagdgrate results in indoor
environments although the algorithm is carried out in 2Dyonl
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Figure 5.13: Individual 3D scan taken at positiongo 12 (see Figure 5.12).
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Figure 5.14: Individual 3D scan taken at positiori8 to 23 (see Figure 5.12).
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Figure 5.15: Ground truth confusion matrix for the scahs. ., 23 (top left). The remaining images show exam-
ples of matches between sczand?7 (top right),4 and6 (bottom left), andl3 and20 (bottom right).
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Figure 5.16: Computed confusion matrix (left) and the results obtairgdgiour approach [145] for place recog-
nition (right). Due to the limited range of the laser scartherrecall rate starts to drop rapidly for scans more than
2m apart.
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5.4.3 Multi-Level SLAM and Altitude Estimation

In the following, we show the typical behavior of our altiidstimation module. In this ex-
periment, we let the robot fly autonomously in a typical offboataining chairs, tables, and a
high amount of clutter. The chairs have a heightt®tm and the tables are arranged next to
each other having a height 87 cm. During this mission the system flew once over the chair
and several times over the tables where it also flew a loopur€i§.17 (top images) shows an
image of the office environment the robot operated in and pséra of our multi-level mapping
system during this mission. As can be seen from this figureatgorithm correctly detected
the objects at corresponding levels. The estimated hefgheahair was!8.6 cm+2.7 cm and
the estimated height of the tables wials9 cm+2.8 cm, respectively. Each multi-level cell has
an extend ofi0 cm x 10 cm. The raw height measurement and the estimated height give
multi-level SLAM are shown in Figure 5.17 (bottom left) wias the estimation of the different
levels underneath are depicted in Figure 5.17 (bottom )idthdte the loop closure at times.
Here, two different realizations of the tables (le2ehnd level3) were merged into one. In-
termediate snapshots of this experiment can also be sedgureFs.6 on page 93. We have
also performed several tests by flying over different tydesbgects, including objects stacked
on each other (for example, a box placed on top of a table)oudirout all experiments, we
correctly detected the objects underneath the robot wittivarage altitude estimation error of
2.1cm=+1.3 cm. The outcomes of additional experiments can be foundsh [6

5.4.4 Pose Control

Since the system is stabilized by independent controNegsjiscuss the result of each individ-
ual controller separately. Again, all modules were extezigitested under real world conditions
in over 50 live demonstrations and were active during the previougexgents as well. The
following experiments are therefore included for compietss.

Altitude Control  For testing the altitude control, we set the desired alatiod .50 m. In the
beginning the vehicle was hovering over the ground. Aftetbding the stabilization the vehicle
started climbing to the desired altitude. The desired hHeigts kept by the vehicle up to an
error of £12cm. The results are shown in Figure 5.17. This experimentpga®rmed whilst
flying over different elevations. Throughout all experirtegthe quadrotor is in general able to
keep the desired altitude up to an average error of appraiyna 10 cm.

Yaw Control  Similar to the experiment regarding the altitude, we ranx@eament to assess
the behavior of the yaw control. In this test we set a desii@a gf 0° and once in a while,
we turned the helicopter via the remote control. When the redeased the remote control, the
vehicle always returned back to its desired yaw with an esfar2°. Figure 5.18(a) plots the
outcome of a typical run for yaw stabilization.

x,y Control  Finally, we show an experiment for the pose stabilizatioly.ofhe pose stability

is strongly affected by the latency of the system (i.e., ilme heeded to calculate the command
given the laser data). Although incremental motion esiionatakes less thahms in average
(with a maximum of15 ms) we have to deal with a latency of arourizd) ms in average due
to the wireless transmission and decoding of the wirelegsasion the Gumstix processor.
A typical run including autonomous pose stabilization iswh in Figure 5.18(b). Here, the
quadrotor was set to keep the initial posé@f0) and once in a while, the user used the remote
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Figure 5.17: Estimation of the global height of the vehicle and the undath floor level. Whenever the quadrotor
moves over a new level, the innovation is used to determimeel transition. The estimate of the height of each
level is refined whenever the robot reenters that partideNai. Top left: The office environment our robot operated
in. Thisimage is recorded from a view point close to the ormshin the top right. The latter shows a visualization
of our multi-level SLAM system during the mission. The cyardalark yellow colored level corresponds to the
chair and the tables detected underneath. The blue linesseqt the current laser measurement not deflected by
the mirror in the local reference frame of the quadrotor tdbtack). Bottom Left: A plot showing the estimated
altitude of the vehicle over time versus the raw measureniér corresponding estimated levels are depicted in
the bottom right plot. Here, levélis the chair, and the levelsand3 reflect the individual tables. Note that Lewel

is merged with Leve? after the loop closure at time indés.
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Figure 5.18: Experiments for the autonomous stabilization of yaw (a) posk (b). During the yaw stabilization
experiment, the quadrotor was required to rotat@°towhile the user manually turned the robot once in a while
to a random orientation. Within the pose stability experiintae quadrotor was set to hover (@&t 0), but was
manually moved backwards once in a while and required to ftk bathe initial pose autonomously. The latency
of the system is shown in (c).
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Figure 5.19: Experiment for path planning and dynamic obstacle avoidaite quadrotor is given a goal point
approximately 5m in front of it. The goal point and the pladrimjectory are shown in the left image. Here,
the black triangle represents the final goal whereas theeseguof red triangles reflect the planned path. While
the quadrotor approaches the desired goal location, ampergers the corridor and blocks the robot’s path. The
person (including the safety margin of 1.5 m) is visualized ahaded box. Since the human is blocking the robot’s
path, there is no valid plan to the goal anymore. The quadtb&wefore hovers around the last valid way point as
illustrated in the middle image. In the third image the parsmwved back, leaving the quadrotor enough space for
a detour.

control to move the quadrotor arouihdh backwards. The quadrotor then autonomously moved
back to the desired position. Depending on the latency insffsgem the pose oscillations
are typically aroundt:20 cm (around the desired location). The latency of the system &
typical experiment is depicted in Figure 5.18(c). With ourrent setup, the quadrotor is able
to autonomously keep the desired pose up to a latency of mippately 350 ms. In this case,
the oscillations are arountl40 cm. However, we observed in several experiments a high risk
of a crash with nearby walls when the latency grows beyiiidns over an extended period of
time.

5.4.5 Path Planning and Obstacle Avoidance

In this section, we present an experiment demonstratin@lgarithms for path planning and
dynamic obstacle avoidance. The quadrotor was given a gaat @pproximatelys m in front

of it (i.e., along ther direction). Figure 5.19 (left) demonstrates this situatid he final goal
(z,y,2,%)T is visualized by a black triangle and the planned trajecshown via a sequence
of red triangles. In the beginning, a person was standingherldft (see the shaded area in
Figure 5.19) entering the corridor and stopping in frontha ¢uadrotor while the robot moved
to its desired goal. Although only the upper part of the huegys are detected, the dynamic
obstacle is enlarged by a safety marginlafm meters which is visualized by the shaded box.
The situation where the human is entering the corridor isatiegh in the left and middle image.
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Figure 5.20: Top left: Fuel-cell prototype mounted on our quadrotor tofide stack is build of six generators and
provides up to 11.5 Watt of power. This is enough to power mboard modules of the robot except the motors.
The reactor for providing the necessary hydrogen is showherbottom left image. The right image depicts a
snapshot of an experiment. Here, the author of this work wagalling the quadrotor while the hydrogen for the
fuel-cell was provided by a supply line. The power generatibthe fuel-cell while being cooled and dried by the
wind present next to the propellers is shown in Figure 5.21.

In the latter one, the person is completely blocking the tsljath. In this case the quadrotor
hovered around the last valid way point since there was nid ydén to the goal anymore.
When the person moved to the left again, the quadrotor was@bdow a detour as shown in
the right image of Figure 5.19.

The snapshots show the endpoints of the laser only. Althdugbks like the quadrotor might
have the space to fly around the person in the middle images th@o valid plan since in the
planning approach the quadrotor is modeled as a point. Caesdy, each laser measurement
is enlarged by the robots dimensions (see also Figure 5.2ga §6).

5.4.6 On-Board Power Generation using a Fuel-Cell Prototype

Up to now, we used a fixed hardware setup and presented diffeotware modules that al-
lowed autonomous indoor flights. However, our system issbboough even in the presence of
additional payload. For the sake of completeness, we validfore describe an experiment per-
formed with an experimental fuel-cell in the next sectionwaés used to power the navigation
system of the robot (i.e., all components except the mators)

In an attempt to test new power sources regarding usahilithe context of small flying
vehicles, we tested a fuel-cell prototype which was dewedidpy the group of Robert Hahn at
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Figure 5.21: Outcome of the experiment shown in the previous figure. Tlamptor was flying between seconds
240 and 380. As can be seen from the plot, the voltage and #ieedr current did not drop during the whole
mission,i.e., the fuel-cell reliably provided the necegseower for the on-board modules of the quadrotor.

TU-Berlin within the muFly project [108]. In cooperation Wwithem, we tested their prototype
for on-board power supply using our quadrotor. The overadl-tell is a stack built of six
generators, each generating powet.atv. The whole stack is able to provide up 16.5 Watt
of power and has a total weight of approximatglyg. We used our quadrotor to test the effect
of environmental conditions on the power generation. lidleve tested if the fuel-cell is able
to reliably provide the necessary power, given the fuelksiaconstantly cooled and dried by
the air that is present underneath or close to the propelese, the fuel-cell provided power
for all components of the quadrotor except the motors. Theksffuel-cell) mounted to our
guadrotor robot is shown in Figure 5.20 (top left). Figur2(b(right) shows an experiment
where the necessary hydrogen was provided via a supplyTime outcome of this experiment
Is shown in Figure 5.21. As can be seen, even though the staslcanstantly cooled by the
thrust generated from the propeller, the supply voltage @bas the current did not drop (see
second240 up to380). We furthermore tested on-board hydrogen generatiorhiofuel-cell
using a reactor whereml H,O heated up t60 degrees were combined witt8 g NaBH,, and
performed full autonomous indoor flights. A snapshot of ahtlig shown in Figure 5.22. The
whole video can be found on the Web [123]. The running reastatso shown separately in
Figure 5.20 (bottom left). Here, the total #f of fuel were enough to power the on-board
sensors up t@ minutes. Although in the current configuratios0Q fuel stack,6 g reactor,
and4 g fuel) the whole system is clearly outperformed by standattdum Polymer batteries,
it shows that this technology can in principle be used in sfhahg vehicles. Note that this
prototype is several orders of magnitude lighter than otugrent state-of-the-art fuel-cells.
However, the current technology is still too heavy for sno@iinanned aerial vehicles (UAV'S)
but we are optimistic that there will be a new generationadé for this size within the next
decades.
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Figure 5.22: Snapshot from an autonomous indoor flight using the fuéltoepowering the on-board modules.
The whole video can be found on the web [123]. The left imageaie the outcome of our SLAM algorithm after
flying the corridor back and forth. The right image displalys juadrotor at the same time. The location of the
reactor and the fuel-cell are highlighted. Despite thegmes of additional payload the robot reliably performed
autonomous navigation.

5.5 Related Work

In the last decade, flying platforms received an increasite;nton from the research commu-
nity. Indeed, IEEE recently elected unmanned aerial veli@dhnology to one of the top eleven
technologies of the last decade [84]. However, one of th@nmepsons for the increased inter-
est is the availability of enabling technology at low cogar8ng from electrical motors able to
generate the desired thrust up to micro controllers whiake lsafficient processing power for
on-board stabilization. In the context of helicopter-lI¥&V’s, most authors focused on mod-
eling and control of these vehicles in the beginning with ecsgd focus on roll, pitch, and yaw
stabilization [121, 147, 7, 8, 25, 43, 30, 80, 162]. The aldé payload is one of the key diffi-
culties for autonomous flights. In other words, the more paglavailable, the more and better
sensors can be carried. In the field of micro and small airckesionly very limited sensing
and processing power is available. Bouabdaéial. [24] present a micro coaxial helicopter
which is able to stabilize along roll and pitch. It is furthere equipped with reactive obstacle
avoidance using a miniature omnidirectional camera ankit égger pointers. Although lot of
research has been done in context of learning and modeknigwhlevel control, we also need
capabilities to obtain the global pose to allow autonomaysgation. Hoffmanret al. [79] pre-
sented a model-based algorithm for autonomous flying wiir ®TARMAC-quadrotor. Their
system is able to fly autonomously in outdoor environmentsreHthe IMU is used for sta-
bilizing the individual axes and GPS measurements allovatdonomous outdoor flights. Ng
and colleagues [111, 36, 2] have developed algorithms &niag controllers for autonomous
helicopter navigation. Their approach allows helicopterperform impressive and aerobatic
maneuvers in outdoor environments, including flying upside/n. In context of outdoor au-
tonomous flying, Scherat al. [132] describe an algorithm for flying fast among obstadles |
buildings, trees and wires. They use a big helicopter whi@bie to carry a SICK laser scanner
and a desktop computer and employ 3D grid maps for regist@tijects detected by the laser
scanner. Subsequently, they use a two step planning meohdor obstacle avoidance. The
first level (called global planning) is a multi-resolutiomplacian planning algorithm and cal-
culates the desired trajectory towards the goal. The t@jgplanned by this system is locally
adapted by a potential field-like algorithm in order to avoibtacles.

Most of the work addressing navigation for UAV’s is based @sion [73, 76, 12, 89, 4,
18, 90]. Templetoret al. [148] demonstrate how to use vision for outdoor terrain nagp
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and autonomous landing. In their work, they use geo-ret@@mmages from a single camera
and utilize a recursive multi-frame planar parallax altor [57] for terrain mapping. Landing
areas are detected by scoring different elevations of aa @aadidate within the estimated
map. Tournieret al. [155] and Bourquardegt al. [26] use monocular vision to estimate and
stabilize the current pose of a quadrotor. Whereas Tournekcalleagues estimate the current
state based on Moire-Patterns, Bourquareleal.use zero and first order moments extracted
from images for control. Johnsaat al. [85] use vision in combination with ultrasound for
autonomous flights in corridor-like environments. They as®obel filter to detect edges and
extract line features from the image. Parallel lines arermassl to represent a bounding box of
the corridor which is used for autonomous flying. The sameggle in combination with a
similar approach for edge detection was also used later bk €ehl. [31].

Thrun et al. [150] used a remotely controlled helicopter to learn lasgale outdoor 3D
models. They employ a downwards facing SICK laser scannerabgd the measurements
using scan-matching in order to generate three-dimenisioaps. However, this information
is not used for autonomous control. Steeerl. [143, 142] also employ a downwards fac-
ing camera for building accurate maps of the environmeneyThack SURF features over a
sequence of images and perform graph-based optimizatiemevier a loop-closure has been
detected. Bloscht al. [18] also use a down-looking monocular camera. They leamcanrate
model of their quadrotor which allows autonomous indoohtisy Cheviroret al. [33] combine
information from an IMU and a down-looking camera to estiendie current pose and velocity
of the quadrotor during manually controlled flights.

Ahrenset al. [5] use an external tracking system to estimate the curtate ef the fly-
ing robot. Here, the robot is equipped with visual markerscWlare accurately tracked via
Vicon camera tracking system [159]. Such a system is alsd bgéMellinger and colleagues
for performing aggressive maneuvers [102]. Huah@l. [83] developed a detailed model of
their STARMAC Il quadrotor in order to fly difficult maneuvemshile Purwinet al. [122] use
learning by iteratively solving a linear least squares f@obto achieve a similar performance.

There has also been some work addressing the navigationirag fighicles in indoor en-
vironments in absence of GPS. Several authors used visioariwol or assist the control of
an indoor quadrotor [85, 89, 5]. Robedsal. [129] used ultrasound sensors for controlling a
flying vehicle in a structured testing environment, while étel. [77] presented a system for
navigating a small-size quadrotor without GPS using ladere, the pose of the vehicle is esti-
mated by an unscented Kalman filter. Whenever the robot haatinra given location, a path
which ensures a good observation density is computed fronedepned map. These highly
dense observations minimize the risk of localization faitu Achtelikaet al. [3] developed
an indoor autonomous quadrotor equipped with a laser racgiensr and cameras enabling
autonomous hovering in a constraint indoor environment Whrk closest (although orthog-
onal) to ours is a recent work of Bachraehal. [13]. Here, the authors present a system for
performing autonomous exploration and map acquisitiomdoor environments. They extend
the 2D robot navigation toolkit CARMEN [130] by adding a Rao-Bdaellized particle filter
for SLAM and an algorithm for frontier-based autonomouslersgtion. However, they do not
provide localization, map optimization, obstacle avo®or mutli-level SLAM. In contrast to
that, we utilize the more robust graph-based SLAM algorithraur system allowing for map
optimization and thus correcting previous poses as wellinéme detail, graph-based SLAM
addresses the full SLAM problem while other filtering tecjugs address the on-line variant of
SLAM only. We also presented our algorithm for estimating #ttitude of the surface under-
lying the robot. This enables a quadrotor equipped with gstesn to fly over surfaces with
heights that are piecewise constant.
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5.6 Conclusion

We presented a navigation system for autonomous indoomflytilizing an open-hardware

quadrotor platform. We described a complete navigationtswl that approaches the different
aspects of incremental motion estimation, localizationul{i-level) mapping, path-planning,

obstacle avoidance, height estimation, and control. Sive€o not rely on special character-
istics of the flying platform like the system dynamics, weidet that our system can easily
be adapted to different flying vehicles. All modules in ousteyn run on-line. However, due
to the relatively high computational cost of some algorsghomly a part of the software runs
on-board on the Gumstix processor whereas the other paroftsboard on a laptop computer.
Preliminary tests make us confident that the whole systemrwil on-board using the next

generation of embedded computers based on the Intel Atooegsor. We provided a wide
range of extensive experiments and videos [123] that lgghthe effectiveness of our system.
Although we assume structured indoor environments, oupmaglgorithm provides accurate
3D results which is also suitable for object recognition &l &s place recognition.
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Chapter 6

Activity-Based Indoor Mapping and
Estimation of Human Trajectories

We present a novel approach to incrementally determining tle tra-
jectory of a person in 3D utilizing human motion and activity in
real-time. In our algorithm, we estimate the motions and adwities
of the user given the data obtained from a motion capture suitvhich
Is equipped with several inertial measurement units (IMUs).These
activities include walking up and down staircases as well adoor
opening and closing events. We interpret the first two typesfoac-
tivities as motion constraints and door handling events asaihdmark
detections in a graph-based simultaneous localization anshiapping
(SLAM) framework. Since we cannot distinguish between indivil-
ual doors, we employ a multi-hypothesis tracking approach o top
of the SLAM procedure to deal with the high data-association n-
certainty. As aresult, we are able to accurately and robustt recover
the trajectory of the person. Additionally, we present an agproach
to build approximate maps of structured environments usingthis
type of information. We take advantage of the fact that peop tra-
verse free space and that doors separate rooms to recover tigeo-
metrical and the topological structure of the environment dter the
graph optimization. We evaluate our approach in several exeri-
ments carried out by different humans in various environmerts.

In the previous chapter we described the navigation systaablimg a quadrotor to fly au-
tonomous indoors. The world was encoded using a graph staucthis allowed us to use our
tree network optimization algorithm (see Chapter 4) for figdihe most likely map, given the
observations. This data structure is also used in the foligwork allowing us to simultane-
ously localize a human and map the indoor environment basédiman activities only.

The problem of localizing and tracking people has recemtbeived substantial attention in
the robotics community as knowledge about the current iposdf its users can help a robot
to improve its services. Especially in emergency situaidike after earthquakes or during
fire fighting, the knowledge about the location of people caratly support search and rescue
missions. Consider, for example, firefighters in a buildingesed by smoke and fire. If a map
of the environment can be constructed while the firefightexswathin the building, an operator
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Figure 6.1: Left: The author wearing the Xsens MVN data suit. Right: Tabidata obtained from the suit when
a person opens a door and enters a room.

or automated system can re-route the people to the exit exafeen emergency. Alternatively,
one can use the map of the environment to more intelligeotydinate the actions of the rescue
workers to more efficiently search the environment for piéérictims and contemporaneously
reduce the time the rescue workers are exposed to potdntalts and hazards.

In this chapter, we consider the problem of simultaneoustymating the trajectory of a
person walking through an indoor environment and the mapetnvironment based on data
obtained with an Xsens MVN data suit [165] by treating atiexa as landmarks. The MVN data
suit records full body postures of a human, by using a setestiadl measurement units (IMUS)
and a biomechanical human model. Figure 6.1 (left) showstitieor wearing the MVN data
suit and Figure 6.1 (right) depicts typical data obtaine@mwh person opens a door.

Figure 6.2 (left) depicts the raw odometry estimated by thewghen walking in a typical
university building. The outcome of our proposed approacthiown in Figure 6.2 (right). To
correct odometry errors, our approach applies supervesding for classification of different
types of activities such as stair climbing and door handliighen utilizes the learned clas-
sifiers to detect doors and stairs and applies a graph-basedlation of the SLAM problem
to recover the full 3D trajectory of the person. In this fotation, the odometry estimated by
the IMUs and the estimated heights of the steps are regasd@thain-)links between detected
doors, which are the landmarks of our system. To deal withitdje data association uncertainty
in the landmark detection, our algorithm applies a mulfpdiyesis tracking scheme. After cal-
culating the path of the person, our algorithm renders a roafaming the individual stairs, the
estimated doors, and approximate locations of walls.

This chapter is structured as follows. First, we descrileendrdware system in the next sec-
tion. Subsequently, we present our algorithms for leardiogr handling events and detecting
stair steps. Section 6.3 introduces the multi-hypotheagking technique for sensors providing
only positive feedback and especially the expressionsatetalcalculate the probabilities of
individual world hypotheses. In Section 6.4, we describe e detect potential loop closure
candidates. This is followed by the description of our olfesgstem in Section 6.6. In Sec-
tion 6.7 we present our experimental results based on reéalrdeorded with people walking
inside various buildings. The experimental section inekittajectories covering single as well
as multiple floor levels. We furthermore present our resutgpproximate mapping and com-
pare the estimated maps with floor plans of the same buildimglly, we discuss related work
in Section 6.8 and conclude our presented work in Section 6.9
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Figure 6.2: Our approach uses human motions to detect door handlingsevemese events are used as landmarks
in a graph-based formulation of the SLAM problem for recavgrthe full trajectory of the person. The raw
odometry data provided by the data suit is shown in (a). Theected trajectory after applying our approach is
visualized in (b).

6.1 Hardware Architecture

The Xsens MVN data suit used within this work is shown in Fgar3. It has been used with
the softwareMVVN Studio 2.6rom Xsens and has the following properties:

17 hardware IMU’s

23 IMU's in total (hardware and software emulated)

measurements up to 120Hz for each IMU consisting of

pose, orientation, velocity, and acceleration

The 17 hardware IMUs are visualized as blue circles and tire 1 Figure 6.3, depending if
they are localized on the back (circles) or in the front {stdihe software, however, emulates
additional six sensors by interpolation. The pink circledicate the location of these emulated
sensors. The most important ones are also labeled with naflesting their position. In total,
the Xsens software processes the raw data and we get filteradurements from 23 inertial
measurement units at a frequency up to 120Hz. Due to an ymtgthuman biomechanical
model and the corresponding kinematic chain, the Xsenwaodtcalculates a full 6D position
(i.e., (z,y, 2, ¢,0,¢)") for each of the sensors. Additionally, we obtain filteredbeity and
acceleration estimates. However, the individual IMUs diecéed by magnetic disturbances in
the environment, since parts of the IMUs orientation ediiomas based on the measurement of
the earth-magnetic field.
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Figure 6.3: The Xsens MVN data suit is equipped with 17 MTi IMUs. Togethéth an underlying human body
model a total of 23 IMUs are emulated. The data provided fohed these sensors includes the positiony, z),
orientation @, 8, 1), acceleration, and velocity. The blue circles highlighe position of the hardware IMUs
visible from the back, whereas blue stars reflect the hare\WdtJs located in front. The pink circles show the
position of additional emulated IMUs.

6.2 Feature Detection

The MVN software filters the raw data of the IMUs in the data anid estimates an odometry
of the body segments consisting of the (filtered) 6D posegoisi and acceleration. A dead
reckoning estimate of the trajectory typically leads to meonsistent map due to the accumu-
lation of small errors over time as shown in Figure 6.2 (lefiherefore, we need to keep track
of other specific events or features. Without this additiem@rmation we cannot detect loop
closures and thus cannot correct the raw odometry from ttaesue.

Within this work, we restrict ourselves to structured eomiments such as office buildings.
To allow us to correct the odometry within such buildings,prepose to use information about
human activities as landmarks. We extract two differenesypf activities:opening or closing
of a doorandwalking up or going down a stair We use motion templates to detect door
opening or closing events and a neural network to detect stepthe next sections, we will
briefly describe both approaches.

6.2.1 Door Handling Events

To learn the typical motion used for handling a door we usaandemplates (MT) as proposed
by Mdller et al. [109]. The key idea of this work is to use simple Boolean fezguikeright
hand is above heatb create more expressive features (motion templates) mpicong the
simple ones. Givem, of those features and a motion sequence of ledgttihis leads to a
matrix of sizen; x K. Each entry of this matrix is either 1 or O indicating thisttea being
active or not at the specific time and that the sequence ldkigthn in general be different for
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Figure 6.4: A synthetic example: Given two examples (a) and (b) of theesamtionwalking The features
11, f are 1 (yellow) iff the left/right foot is in front of the bodyna O otherwise. The resulting merged template
is depicted in (c). Here, gray areas indicate the valiie meaningdon’t care Intuitively, the matrix can be
interpreted asfeet paralle] right foot in front feet paralle] left foot in front feet parallel

each motion sequence. Consider for example two featfargs with f; indicating the left foot
being in front of the body and, being 1 if and only if the right foot is in front of the body.
Given this set of features, a typical walking template foo twhfferent sequences of the same
length look likes Figure 6.4 (a) and (b). If we generalize twoanmon motion template (also
calledclass templategiven the two examples, we would learn a motion sequenckasrsin
Figure 6.4 (c). Here, black and yellow cells reflect the véland 1 respectively. However, we
obtain a new value 0.5 visualized by the gray shaded boxas value represents the flagn't
care The value 0.5 is obtained since exactly one feature atitnis is O and the other is 1.
In the following, we will briefly describe the algorithm foedrning a class templatg, for a
single activity.4 from a set of training examplé3. The algorithm for learning a class template
for a single activity can be summarized through the follayateps (see also Algorithm 5):

1. Calculate the motion templates for all examples of thisviygt

2. Take one of the motion templates, call it reference tetapénd align all remaining to this
one using dynamic time warping [124]. This procedure erssthiat all other templates
have now the same length as the reference template.

3. Compute a new template as the average of all and store it.

4. Repeat the previous two steps for each motion template lesiactly once the reference
template.

5. Replace the training data by the outcome of the calculaeglates from the previous
step.

6. Repeat the whole process until no major difference betwreenalculated templates ex-
ists.

Note that the averaging of the templates includes more doatpl steps, but we refer to the
original work of Mulleret al. [109] for more details about learning a motion template.
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Algorithm 5 Learn Class Template

Input: D = (Dy,...,D,) Il the set of training examples for activiy
Output: C4 /I class template for activityl

1: My = (M, ..., M,) = calculateMotionTemplaté®) // initial motion templates.
2: t = 0 // iteration

3: repeat

4: =141

5. fori=1,...,ndo

6 T; = M, _1[i] Il current reference template
7 forj=1,...,n;5 #ido

8 T; = M;_1[j].alignToReferendd;)

9 end for
10: M, = M,U averageTemplates(, ..., 7,)
11:  end for

12: until (differenceBetweenTemplatesi;) < €) || (¢t > tmax)
13: C4 = averageTemplatés1,)
14: return Cy

Now, given the learned class template for each activity anéva motion sequence, we can
calculate a similarity between both. To do so, we compute aomdemplate of the actual
sequence and align it to each class template utilizing dym&ime warping. We furthermore
compute a distance score for each pair of templates. Thre sewies betweefl and 1. In-
tuitively, the value0 reflects a perfect match whereas adicates a disparity for each feature
at each time between both templates. However, if this ssobelow a threshold, the actual
motion sequence is said to belong to the same motion clabe ataiss template.

Since we are only interested in the motion used for handlidga with either the left or
the right hand we use features based on the pose and velbttigy loands only. More precisely,
we use a set of features describing whether the hand is at\tbkdf the door handle, whether
it is raising, hold still or lowered, and finally whether thartd is moving towards the body or
away from it. An example of such a sequence is visualized gurfé 6.5. It shows a typical
motion while the user is opening a door (pulling towards husing his right hand. The figures
labeled (a) trough (d) show intermediate snapshots of theomat the highlighted time index.
In detail, Figure 6.5 (a) shows the initial situation whene user is approaching the door’s
handle using his right hand. In this case, the pattern inghtifed , 2, and3 reflect the vertical
position of the right hand, whereas features, and9 describe the horizontal motion of the hand
away from the body towards the handle. The explicit handtihtihe door is visualized in (b).
The corresponding pattern in the vertical velocity spaeat(irest, . . ., 6) reflect the situation
where the hand'’s vertical velocity is close to zero (sineeubker touches the handle) followed
by pushing the handle downwards in order to open the doois&utently, Figure 6.5 (c) shows
the part of the motion where the user pulls the door towanaks fihis can be seen in the features
7,...,9. Finally, the user releases the door handle, resulting imamy the hand downwards
again, as visualized in (d) through the features ., 3.

We learned the template for the activihandling a door which consists of the four sub-
classepen left, close left, open right, close rigltsing 10 examples from a training data set
for each subclass. Based on a second validation data setlegteskthe threshold = 0.25 for
detecting the motion. Intuitively, we require a match ine&tdt75% of the whole sequence be-
tween the learned template and the actual sequence. Ussrthriasshold, we did not encounter
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Figure 6.5: Motion Template for a door opening sequence (middle imaye)low and black blocks reflect the
corresponding feature being 1 and O respectively. The firsetfeatures describe if the right hand is at the level of
a typical door handle. Subsequently, the next three featlgscribe if the right hand is being lowered, hold still,
or raised. Finally the last three features describe if thktriand is moving towards the body or way from it. The
highlighted parts are visualized by the images locatedealath and at the right hand side of the motion template.
(a) approaching the door. (b) handling the door. (c) opethiegloor (pull) and (d) releasing the door handle.

any false positive®n the validation data set. Within this process, we used datarded by
three subjects. The motion of two subjects was used foritr@irwhereas the motion of the
third one was used for validation. Although the featuresduse detecting a door are quite
simple, we can reliably detect the point in time when the dwordle was touched within5
seconds of the true event (we evaluated this using manwddgléd ground truth). Therefore,
we can use the pose of the hand as an approximation of thédnadtthe door.

Although one could utilize features based on the geomettheffeet during the motion
sequence as well, we realized in our experiments, that hsitmare a very high disparity in the
walking pattern when opening a door. Either the human sippéront of the door, walked
constantly while opening it, moved forth and back to avoid ttoor and so on. One could
still utilize this information but this would lead to a seption of the classes into additional
subclasses based on the number of walking patterns. Hoyeewentention was to use a small
set of simple features.

6.2.2 Stair Detection

To be able to reconstruct 3D trajectories within buildingds inevitable to detect vertical
movements of the user. Due to the high uncertainty in thehtagtimate of IMUs, the man-
ufacturer’s software assumes an environment consistirgg fgle floor. When walking up
or down a staircase, the software “snaps” the human to thengras indicated by Figure 6.6.
Therefore, one needs additional means for determiningggsam thez coordinate. In our
approach, we achieve this by identifying stair steppingiomst carried out whenever the user
walks up or down staircases. In principle, we could have eyga the same motion template
approach as for the door handling events. However, motimpliates are especially useful for
detecting complex activities (like door opening) at a cednse resolution. In practical exper-
iments we found that during typical stair-climbing peopéed approximately.5 seconds for
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b)

Figure 6.6: Typical data obtained from the data suit while climbing ugarsThe left (brown) foot is placed on
the next step in (a), whereas the subject then moves his(dghk blue) foot onto the next step. The images labeled
(b)-(f) show how the software “snaps” the human to the growhie climbing up the next step of the staircase.

each stair so that the motion templates described abovehwletect doors with an accuracy of
1.5 seconds, were not accurate enough to exactly determineotheip time when the foot is
placed onto a stair. Unfortunately, increasing the timeltgsn of the MT accordingly leads to
a high computational complexity due to the dynamic time wagpWe therefore developed an
efficient and temporal substantially more accurate clasdifir detecting the individual stairs
based on neural networks.

The goal of the following approach is to detestair events, consisting of two subclasses
namelystair upandstair down To achieve this, our method employs a sliding window cdnsis
ing of 5 frames that correspond t).7 milliseconds. Within this window, we extract features
from the suit’'s data. In more detail, we use the relativetpmsdf the feet and the toes as well as
the minimum and maximum acceleration resulting in a totdbahput features. We trained the
neural network using manually labeled training data emppyBNNS [167] and RProp [128]
as learning functions. The neural network consistglafiodes in the first layer (see Table 6.1),
12 nodes in the hidden layer, afgdhodes in the output layer. The latter nodes represent the thr
classes “step up”, “step down”, and “other”, whereas thewamhof neurons in the hidden layer



6.3. Multi Hypothesis Tracking 123

F. No. Value F. No. Value

1 RFz; - LF.z 12 min(RF.2;_2.412, RT.2; 04190, LE2i 9410, LT.24_9410)
2 RFz; - LT.z 13 | max(RF.z;_ 9440, RTzi 0419, LRzt 9440, LT.2t 2.419)
3 RT.z; - LF.z 14 min(RF.AcCx; 5,410, RT.ACCZ; 2.419)

4 RT.z, - LT.~ 15 max(RF.AcCx; o, 2, RT.ACCZ; 2.412)

5 RF.Accux, 16 min(RF.AcCz;_5.12, RT.ACCZ;_9.442)

6 RF.Accy, 17 max(RF.AcCz; 2.2, RT.ACC2;_2.412)

7 RF.Accz; 18 min(LF.Acc.xy 9442, LT.ACC.x; _9.442)

8 LF.Acca; 19 max(LF.AcCxy 9419, LT.ACC.x; _9.412)

9 LF.Accy; 20 min(LF.AcC.z; 2.9, LT.ACC.2;_2.412)

10 LF.Acc.z 21 max(LF.AcC.z;_9.4.0, LT.ACC.2;_2.12)

11 | [[(RT.az-LT.zy) |2

Table 6.1: Features employed in the neural network for step detectiithin this table “F. No”. is short for
“Feature Number”. Subsequently, “RF”, “RT”, “LF”, and “LTis short for “Right Foot”, “Right Toe”, “Left
Foot”, and “Left Toe”. Finally, “Acc” is short for “Accelertdon” and (¢ — 2 : ¢ + 2) denotes a window df frames.

was chosen a1 + 3)/2. The training data was recorded by a person walking up andhdow
two different staircases twice and contains a totdit$tair events, covering slightly more than
two minutes. Once our predictor has detected a stair evengstimate the height of each stair,
by calculating the difference between the two feet along:tais given the pose estimates
obtained from the data suit. Using this approach, we aretaliletect step events with an error
of 1.5 frames & 12 ms) with respect to a manually labeled ground truth.

Note that one could employ the neural network approach alsddtecting door handling
events. We tested this in several experiments using the dataesets also used for the motion
template approach. In all runs, the recall rate using theat@etwork was around 60%. How-
ever, the worst recall rate using motion templates was ajopeiely 88% as will be shown in
the experimental section.

Up to now, we are able to detect when the user climbed up or gogtaircase, and em-
ploying the motion templates, we are able to detect when $ee touched door. However,
we do not possess any information of which door was handlexithéftefore have to take care
of possible data associations, which we deal with by empbpw multi-hypothesis-tracker as
described in the next section.

6.3 Multi Hypothesis Tracking

In this section we briefly review the Multi Hypothesis TrackHT) as described by Reid [127]
for sensors providing only positive feedback. Subsequent derive the expressions needed
to compute the probabilities for a data association givéaaded door handling events. If the
user handles a door, we gain information about this door antynot about any other door in
the users neighborhood, which is different from trackindtiple targets with a laser scanner
for example. In the original paper by Reid, sensors providinty this kind of positive feed-
back are called typ2 sensors. There, any measurement can be either detectephéaso an
existing track), marked as a false alarm, or be a new traciceSh our particular case the tracks
are static doors, we will call them doors in the remaindehdf section, rather than tracks. As
described in Section 6.2.1 we select a threshold for detedti such a way, that we do not
have to model false positives. Note that we will discuss eméry end of the next section why
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including a model for handling false positives does not ssagy improve the data association
in our case.

Since we do not model false positives, a measurement carbenilyterpreted adetected
(when matched to an existing door) or asaav door In the following, we assume that a hypoth-
esis consists of the current trajectory, the estimatedilmtsof doors and the data association
between different doors. To derive the probabilities ofvitthal measurement assignments we
start by reviewing the formulation of the Multi Hypothesisa€ker for type2 sensors.

Let Qf be thej—th hypothesis at timé and Q’;(‘; the parent hypothesis from Whi(ﬂzg? was

derived. Let furthet; (%) denote an assignment that, based on the parent hypofﬁggs}iand
the current measuremeny, gives rise td2?. The assignmenk (k) associates the current mea-

surement either to an existing door or a new door. Given thbability of an assignment and

the probability of the parent hypotheﬂﬁ(‘kﬁ, we can calculate the probability of each child hy-

potheses that has been created throliglt). This calculation is carried out recursively [127]:
p(%]z) = p(Y(k), Qb 2k)

()
(2| V5 (k), 0) - P8 (R)1Q5)) - p()s (6.1)

Ba%er
Markov

with p(Q];(_J;) being the recursive term, i.e., the probability of its parétere, the factor) is a
normalizer. The leftmost term on the right-hand side afterormalizer is the measurement
likelihood. In our case of mapping indoor environments gdimman motion and activity, we
assume that a measuremepassociated with a dogrhas a Gaussian probability density func-
tion (pdf) centered around the measurement prediciiowith innovation covariance matrix
S;, and

N(z) = N (232, S)). (6.2)

Here, the innovation covariance matrix is the uncertairitthe door with respect to the cur-
rent trajectory and its derivation is described later intteac6.4. We further assume the pdf
of a measurement belonging to a new door to be uniform in tlsemhtion volumé” with
probabilityV~!. Hence, we have

Pl W5(k), Qy) = N(2)V0H, (6.3)

with § being 1 if and only if the measurement has been associatédawiexisting door and
0 otherwise. The central term on the right-hand side of Eqng6.1) is the probability of an
assignment sep(\llj(k)m’;(*j;), which is composed of the following two terms: the probapili
of detectionp,,,» and the probability of a new door. In our case the probabdftg detection

is equal to chObsing one of the current candidate doors,alledoors within an uncertainty
ellipsoid. Therefore,

pdet? = NC<X1:k7 Q];(ij)1>71, with (64)

NC(xlzk,Q’;@) being the number of door candidates, assuming the trajegtar within the

world Q’;(‘])l Assuming the number of new doors following a Poisson diistion with expected

number of doors\,,.., in the observation volumg we obtain

p<‘PJ(k)‘Q§G;> = pflet? : /L(l - 57 Anewv)y (65)



6.4. Simultaneous Localization and Mapping 125

where

(AV)"exp(—AV)

n!

u(ny AV) = (6.6)

is the Poisson distribution for events given the average rate of events ia the volumeV'.
Therefore, Equation (6.1) can be reformulated as

p(QﬂZk) = p(‘I’ (k) Qg(jlfzk)
Bayes _
o (el ). Q45 (I - PG
Eq. (6.3):-Eq. (6.6) (Zk>6V6 1p6 k(}\ V)l_(s )
det new
exp( Aaew V) (L = ) p(4).- (6.7)

Observing that1l — §)! is always 1 (since is € {0,1}) and noting thatxp(—\,.,V) can
be taken into the normalizer (since it is constant for all hypotheses), we can finally rewr
Equation (6.7) as

P12 = 0 (N paar) N p(QL5). (6.8)

So far, we can detect doors and stair steps and calculatedbalplity of a data association.
In the next section we address the remaining questions oSbAM procedure, namely the
detection of possible door candidates (i.e., loop cloguitke calculation of the innovation
covariance, and the algorithms which are utilized to cantee trajectory.

6.4 Simultaneous Localization and Mapping

We address the simultaneous localization and mappinggmobl, its graph based formulation.
A node in the graph represents either a pose of the humanré@mesented by the center of
the hip) or a location of a door whereas an edge between twestoddels a spatial constraint
between them. These spatial constraints arise either fnenemental odometry, potentially
adjusted according to the stair heights estimated fromdtaibing events, or by closing a loop
which corresponds to establishing a data association leetiweo doors. Thus, the edges are
labeled with the relative motion between two nodes. To camghe spatial configuration of the
nodes which best satisfies the constraints encoded in tles@dghe graph, we utilize a variant
of our optimization algorithm (see Chapter 4). Since the d@ordling activities do not give us
information about roll and pitch, we restrict our optimipat problem to(x, y, z,)*, with ¢
being the yaw. This allow us to adapt the fast 2D, {/, /)T) version of our tree-based network
optimizer towardsz, y, z, )’ optimization and still maintain its computational propest By
repeatedly performing this optimization whenever a new th@s been detected and a new data
association has been established we can incrementallge¢de uncertainty in the current pose
estimate while processing the data.

Since we are only able to detect the fact that there is a doerhave to track different
possibilities of data association, namely whether thesturdetected door is one of the already
mapped doors or whether the door has not been perceivedebefar already mentioned in
the previous section, we utilize multi-hypothesis tragkiar keeping track of all possible out-
comes. To detect a potential loop closure (i.e., recognizea@ously seen door), we identify
all formerly detected doors which are within the uncertagitipsoid of the current pose by a
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Dijkstra projection of the node covariances starting frév@ turrent position. The innovation
covariance is directly used for calculating the likelihooidthe door as described in Equa-
tion (6.8). All doors being withir8o confidence of the current pose are considered as potential
loop closure candidates, and together with the possitfithe current detected door being a
new door lead ton + 1 different outcomes, given the number of loop closure caatdglisn.

For each of these association possibilities we create aaepgraph, encode the selected
constraint and optimize it. The multi-hypothesis tree ¢fh@re grows exponentially in time
and pruning of this tree is mandatory to keep computatioosiscreasonable. In our case, we
utilize N-scan-baclpruning as proposed by Cox and Hingorani [38], which worksodlews:
it considers an ancestor hypothesis at time N and looks ahead in time to all its children
at the current time& (the leaf nodes). The probabilities of the children are seshmp and
propagated to the parent node at tilme V. Given the probabilities of the possible outcomes
attimek — N, the branch with the highest probability at tihés maintained whereas all others
are discarded. Since in our case, a step in the MHT only ankes a door has been detected,
this is identical to localizéV steps ahead in time (at door level). In our implementaticn geor
not count a data association (step) in time if the only childach hypothesis is the association
with a new dooror if the trajectory between two subsequent handling eweatssmaller than
1m, reflecting the immediate closing of the same door aftesipg it. Thus we ensure that
at least one combination d¥ data associations in time reflect anhstep localization among
different and already partially mapped doors.

An example of the N-scan-back MHT algorithm is visualizedigure 6.7. This example is
a snapshot from one of our experiments described in det8gation 6.7. At the specific time
the human walked around the building leaving at the top exdtentered the building through
the main entry labeledlO in 6.7 (a). Starting from the pose, where the current door was
detected, the uncertainty of the pose was back-propagétzihg Dijkstra expansion. Since
we used the same uncertainty foandy, the resulting ellipsoid is a circle. Note that due to
the back-propagation of the uncertainty the current posettee uncertainty region of the door
A0. For better visibility, only the doors being considered asdidates are shown with their
uncertainty regions. Therefore, only two data associatame possible in this case, namely
matching the current door witd0, which in this case is the correct association, or marking
it as a new door. Calculating the posterior probability ofreassociation leads o = 0.597
for the casenew doorandp = 0.403 for the correct association. Note that in this situation,
a maximum likelihood approach selects the wrong assoaiatiowever, as the human enters
the building and opens another door, given the previouscadsmn, different outcomes are
possible. Figure 6.7 (b) depicts the situation for the clagtthe previous decision wasw door
and Figure 6.7 (c) shows the situation for the decigmaich withA0. Given this sequence of
doors, the full posterior of the branclew doorat timet sums up td).3683 while the probability
for the branchmatch withA0 sums up td).6317 (see Figure 6.7 (bottom row)). Here, an N-
scan-back o2 would be already sufficient to keep track of the correct datoeiation, since
the MHT can decide to keapatch withA0 at timet and discard the other branch.

As stated earlier, we selected a thresholithin the motion templates approach in such
a way that we do not need to model false positives. Note thaketimy false positives would
“only” introduce another term in the MHT, namely)ap similar to Apew. TO understand why
including this model is suboptimal in our case consider dhiewing. First of all, we will never
be able to distinguish between a single measurement of aashmba false positive. To resolve
this ambiguity, the human has to handle a door at least tvassufning that both events are
detected). Since a human typically does not handle the samendultiple times in a short
period of time, we would need to allow for an infinite N-Scaack, which is computationally
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Figure 6.7: A snapshot from one of our experiments. The human re-erterduilding through door0 (a).
Based on the MHT decisiomew doorandmatch withA0 different hypothesis are generated as shown in (b) and
(c). The probability for a match witl0 is lower than for the new door, which would be the wrong dataeisition.
However, comparing the probabilities of all possible warlalutions given the previous decision we see that the
probability of the branch “previously matched wit)” is now higher than “previously mapped to a new door”.
Thus, postponing the data association by only one step thi§rexample) already sufficient to keep track of the
correct data association.

RSSO

new doo Q\matchAO
p=0.597, p=0.403

infeasible. However, given any finite N-Scan-back, condide three possible cases (excluding
the possibility of matching a measurement with an existiogrl

1. M\ew > Arp: Regardless of upcoming measurements, every false postiabeled as a
new door.

2. Anew = App. If we detect the same door within the N-Scan-back periocastl once
again, we would choose the hypothesis that labeled it as ‘thaov” first. If not, we
would choose one of both hypotheses by chance.

3. Anew < Arp: Only doors, that were handled multiple times (dependinghenratio be-
tween both valuesyithin the N-Scan-back period would be included in the map. All
others would be labeled as false positives and therefocaudied. In the worst case, the
N-Scan-back could be smaller than the minimum amount ofdiangoor needs to be han-
dled. However, given any finite N-Scan-back, this would satally reduce the chance
to detect loop closures and thus substantially decreagebstness of the approach.

As can be seen, none of the cases would generally improveatiacagsociation in the multi
hypothesis tracker but increase the computational coriipldue to the increased amount of
generated child hypothesis.
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Since we do not model false positives, each of those evetitbewither labeled as a new door
or matched to an already mapped one. However, the latternampens, if the false positive is
close to an existing door and the subsequent handling er@tth the current map quite well.
This, in return, would only impose a small error in the oviaradp. A door which was observed
only once, however, will have no effect on the trajectoryimoation since no loop closures
are present. We will see in the experimental section, thatalso had no effect on the room
segmentation.

6.5 Room Segmentation and Approximate Mapping

The output of the multi-hypothesis tracking can be used tegge an approximate map of
the environment. Assuming that doors separate rooms, wetitshe whole trajectory based
on the locations of individual doors. Thus, even if a door wasalways detected or the user
moved through an open door, the trajectories are segmaerttedifferent rooms, given the spe-
cific door was detected at least once. Since steps have ra effédhe segmentation, we also
obtain segments covering multiple floors (i.e., the hallwayhe process of room segmentation
Is also visualized in Figure 6.8 and Figure 6.9. The raw ttajg and the outcome of the MHT
process is shown in (a) and (b) respectively. In order to yebgectories belonging to the same
room, we cluster the data in the following way: Each segmeatugmented with a segment id,
depending to which door this segmented trajectory is caedeo, and on which side of the
door it belongs to. This step is visualized in Figure 6.8 @ce this id is calculated incre-
mentally for each point starting from those directly corteddo a door, a trajectory between
two doors is typically cut in half. Given the orientation oflaor, we now merge subsequent
segments which are connected to the same door and on the slem&\e repeat the last step
until no change in the segment ids occur, i.e., until cormecg (see Figure 6.8 (d)-(e)). Finally,
we merge segments which intersect with each other in ordeope with the situation that a
room has more than one door. The outcome of this processuwasind=igure 6.8 (f). In order
to seek for walls, we incrementally enlarge each segmenafiaethe other until it touches the
extend of a segment belonging to another room or up to a thiekghwhich was settd.5 min

all experiments yielding an approximate map as shown inréigwd (a). The floor plan of the
same building is shown in Figure 6.9 (b).

To sum up, we build a modified Voronoi diagram with respecti segmented trajectory.
We place an obstacle (wall) at every location having the sdistance to the closest point of a
trajectory belonging to a neighboring room. The differetcéhe general Voronoi diagram is
that we also place an obstacle when we exceed a maximumahdiathe trajectory. Note that
since we segment the trajectory according to different gome also obtain a topological map
of the environment at the same time when calculating thecequpiate map.



6.5. Room Segmentation and Approximate Mapping

T T T T T T T T T T
raw odometry corrected trajectory ®
I a) St b) door
0F 0r
Sk S
-10 -10
-15 F -15 F
-20 -20
25 F 25 F
-30 + -30 (/
g g
35F 35F 7
X[m] x[m]
-40 | | | | | -40 | | | | |
-20 -10 0 10 20 -20 -10 0 10 20
I I I I door ® I I I I I door ®
L segment | e L segment 1 e
> C) segment 2 ® 3 d) segment 2 ®
segment 3 © segment 3
o+ segment 4 © 0+ segment 4 ©
segment 5 segment 5
segment 6 segment 6
5+ segment 7 5+ - ° segment 7
° segment 8 0o ~ \ﬂ segment 8
segment 9 ® segment 9 ©
-10 | ) 4 segment 10 -10 |+ segment 10
segment 11 @ segment 11 ®
segment 12 segment 12 ©
-15 segment 13 -15 segment 13
segment 14 segment 14
segment 15 segment 15
220 [} segment 16 220 segment 16
[ ] segment 17 'y segment 17
e segment 18 - segment 18
25 4 e~ " segment 19 o | -25 ° segment 19 ©
.. segment 20 © o
segment 21 ©
30 - —_ segment 22 © -30 —_
é segment 23 é
S segment 24 © S
35 x[m] segment 25 35 x[m]
segment 26
_40 1 1 1 1 1 40 1 1 1 1 1
-20 -10 0 10 20 -20 -10 0 10 20
T T T T T T T T T T
door ® door ®
| segment | ® | room]1 e
> e) segment 2 ® 3 f) room 2 e
segment 3 © room 3 e
o0k segment 4 o 0k room4 e
segment 5 room 5
segment 6 room 6
5+ segment 7 5k room 7
segment 8 room 8
segment 9 © room9 e
-10 segment 10 -10 room 10 e
segment 11 e room 11 e
segment 12 © room 12 ®
-15 segment 13 -15 room 13
segment 14
segment 15
220 segment 16 220
[ ] [ ]
25 ° 25
3 [ 4
-30 -30 r
£ £
= S 35 7
X[m] X[m]
740 1 1 1 1 1 740 1 1 1 1 1
-20 -10 0 10 20 -20 -10 0 10 20

129

Figure 6.8: Approximate map generation: The raw odometry is shown ia)the corrected trajectory is shown
in (b). The corrected trajectory is segmented based on tteitm of the individual doors. For each segment,
we obtain an individual id based on the door and its oriemtaft). Segments connected to the same door and
on the same side are then merged. This process is repeatiecbamergence (d)-(f). Note that we also obtain a
topological representation of the environment. The esgchanap given the segmentation plotted in (f) is shown

in Figure 6.9 (a).
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Figure 6.9: Continuation from Figure 6.8. The outcome of the iterateghsntation is shown in Figure 6.8 (f).

We finally enlarge each segment incrementally and place lawvh@never it hits the extend of another segment or
exceeds a maximum distance (a). The floor plan of the samdimgiils shown in (b) for comparison.

6.6 Overall System

Our approach is summarized by the pseudo-code in Algorithrieigen the odometry up to
the current point in time, x'**, the N-scan-back size and the current multi-hypothesis tree
QU = {Q1, . QF), with @7 = {@/,..., Q] }, the algorithm works as follows. Note that
k is the current depth of the hypothesis tree and is increaskdifahere is ambiguity in the
data association of a door. First, we add a node (current po#®e hip) and an edge into
each graph of the current hypothesis at the current depthd detect the activities at tinte

in line 1-3. This is performed by using motion templates fetedting door handling events
and neural networks for detecting step activities as desdrin Section 6.2. If an activity is
detected and this activity is a stair step, we augment thenetly information of the recently
added nodes with our height estimate (lines 4-8). This h&gtimate is obtained by estimating
the height difference between the left and the right footiandrporating if the current detected
step is a “step up” or a “step down”. If a currently detectetivity is a door handling event, we
calculate for each hypothegﬁC at depthk potential loop closure candidaté$ using a Dijkstra
expansion starting from the corresponding current posier kil hypotheses no potential loop
closure candidate exists, the only explanation of this mregsent is that it originates from a
previously unseen door, thus each of the current hypotheme®nly include anew dooras
described by lines 16-19. In this case it is obsolete to adjeshypotheses probabilities since
all probabilities are multiplied by the same factqy.,, which would be normalized out later on.
In the case that at least one hypothesis at dégths one potential loop closure candidate we
create a new set of children for all hypotheses (lines 21-ZRBg number of each set is equal
to the number of loop closure candidates plus the additionalreflecting the association “new
door”. The latter (anew dooj is added to one child of each hypothesis whereas the graphs
of the remaining children are augmented with the loop clesdges. The probabilities of the
individual hypotheses are calculated according to Eqnai8 (lines 23-30). Subsequently, we
normalize the probabilities and perform the N-scan-baakimg as described in the Section 6.4.
Finally, we optimize the remaining hypotheses at dépth1 using our tree network optimizer
(see Chapter 4) and calculate the approximate map of theoenvent as specified by lines
31-35 and described in the previous section.
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Algorithm 6 Human Indoor Mapping

Input: measurements up to current timex'*
Input: N-scan-back sizen
Input: hypothesis treeQ'*

addNodeToEachHypothesis]
addEdgeToEachHypothest$(! xt)
A = detectCurrentActivities{':*)
if stepActivity e A then
x' = estimateHeighi")
updateLastAddedNodelnEachHypothesis(
updateLastAddedEdgelnEachHypothesist{,x!)
end if
if doorActivity € A then
k, = |QF| /I number of hypothesis at depth
v = 0 // number of all loop closure candidates
forj=1,...,k,do
C} = calculateLoopClosureCandidatfs]
v=1v+|C}
end for
/I no candidates» new doorfor all hypothesis
16: if v == 0then
17: addDoorNodeToEachHypothesis(doorActivity. hati
18: addEdgeToEachHypothesi$(!, doorActivity.handg?))
19: else
20: forj=1,... k,do

=

e o il
aAsrwNdER O

21 v; = |C¥| Il current number of candidates
22: {7+, .., QpfL ) = createChildreng), v; + 1)
/I new door
23: Q’jjjl.addDoorNode(doorActivity.hanﬁ())
24: Oy "}, -addEdget'!, doorActivity.handg'))
25: calculateProbability¢, "/,
/l'loop closures
26: fori=1,...,v;do
27: Q! addLoopClosureEdgesf (i)
28: calculateProbabilityf¢ )
29: end for
30: end for
31: k=k+1
32: normalizeProbabilitie${**!)
33 nScanBackPruning!—m#+1 n)
34: optimizeEachHypothesi®@(+!, numlterations)

35: calculateApproximateMapForEachHypotheQis(!)
36: endif
37: end if
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6.7 Experiments

The following sections show the results obtained with ouremntly implemented system. First,
we will present our results on trajectory estimation basedhwman motion and activity and
evaluate the error of our estimated door locations witheesfm a manually measured ground
truth. We calculate the error by first estimating the bestdfamation between the estimated
map and the ground truth throughout all floors. This trams&dion is then used to calculate
the error (mean and std) between the estimated door losasiod the ground truth map. In
Section 6.7.2, we finally present our results on approxiraatetopological mapping. Videos
of the experiments can be found on the Web [110]. They shovintremental update of the
final best hypothesis. Our current system, though not fulliynoized, is able to perform an
incremental update at a rate of 10Hz on an Intel i7 1.7 GHDfapt

We evaluated the approach described in this chapter onrefiffelata sets in which differ-
ent people walked in various buildings. The first set of expents was performed covering
multiple floor levels while the second set of the experimeatstains data recorded by differ-
ent humans covering a single floor level partially in the sdmiédings. All experiments were
performed using an N-scan-back of 3 akg, = 0.03, which is approximately the number
of doors relative to the area covered by the building. In gane,., depends on the type
of building. For example, in a hotél,..,, should be significantly higher than in a warehouse.
However, we found that small changes to this parameter déeadtto substantially different
results. Thus, the remaining free parameter is the covagiamtrix of the odometry used for
the Dijkstra expansion. Recall that we have no informatioouabhe current magnetic field.
The covariance matrix, therefore, also reflects the magdetiurbances present in the building,
since high magnetic field errors result in a high pose erromesion from the data suit. We
will show the outcome of the maximum likelihood hypothesishie upcoming experiments.

6.7.1 Trajectory Estimation

In this section, we present the results of several expetsreavering single as well as multiple
floors of different buildings. Note, that all upcoming platissingle levels of the buildings also
contain all points up to the middle of the next and the prewviftoor respectively. Please also
note that the raw data (without the step detection) contarieformation along the-axis with
respect to different floors, i.e., only a single floor levgbissent.

The first experiment contains a trajectory of approxima®ehkm including222 door han-
dling actions and is shown in Figure 6.10 and in Figure 6.1t Building has three floor levels,
namely the first floor, an intermediate floor level contairting main entrance, and the second
floor. Since the intermediate level contains only the mainagrice door, we omitted to plot this
floor separately for better readability. We used a variarice03 m per meter inc andy and a
variance of).1 m per meter along the axis. Our approach reliably detect2th out of the222
door handling events with one false alarm. The average efrthre estimated door locations
is 0.31 m%0.17m wrt. a manually measured ground truth. We detected 106 fdli@® stairs,
missing 7 stairs down and 3 stair up and had one false alarm difierence in the calculated
stair size between up and down is approximatehbcm. The raw odometry trajectory is de-
picted in Figure 6.10 (a). Although no floor level informaties present in the raw data, the
raw odometry trajectory is already quite accurate. Thisltesrom the fact that the building
contains less metal structure compared to modern buildiagisat we obtained only small mag-
netic disturbances. As can be seen in the next experimanggridisturbances typically lead to
higher pose errors. The raw trajectory including our stepat®n is plotted in Figure 6.11 (a).
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The maximum-likelihood map estimated by our approach isatiegh in Figure 6.11 (b). For
better comparison, we also segmented the trajectory fardiit floor levels and compare them
to floor plans generated by the architect of the same buildsx\ghown in Figure 6.10(b)-(e).
The alignment for all floors was performed based on the thiddlmdoors of the first floor.

The data for the second experiment was recorded in a typndesity building containing
several floors and including small seminar rooms as well@feloture rooms. The trajectory is
approximately2.85 km long covering three floor levels. This experiment is aradiing for two
reasons. First, disturbances rising from the metal straaitithe building itself and from walk-
ing closely to chairs and tables lead to a high pose errormbe&aeen in the raw data depicted
in Figure 6.12 (a). Second, the first and the second floor aadynielentical on one side of the
building which results in many potential loop closure calades. Compared to the first experi-
ment, this building contains in total five different stasea. Two staircases are present in each
of the two lecture halls (see Figure 6.13 (b) left part) cating the first floor and the second
floor, whereas the main staircase connects all three floetden this experiment, we used a
variance of0.1 m per meter in all directions, i.er, y, andz. The raw trajectory including the
steps detected by our algorithm is plotted in Figure 6.13 {ie result of our approach com-
pared to the floor plans of this building are shown in Figude@b)-(d). Finally, the maximum
likelihood estimation of the whole building is depicted ilgé&re 6.13 (f). In this experiment
we detected 75 out of 178 door handling events with an average errot ai+0.41 m. We also
have one false alarm at the third floor which originates frbm tiser moving a chair away in
the library which was blocking his path. Regarding the statedtion we misse@2 out of 473
stairs {12 stairs up and0 stairs down). The average difference between the calclkttar
heights isl.3 cm.

The third experiment was recorded in a university buildingsisting of five floors and con-
taining a substantial amount of metal structures. Hereptagnetic disturbances did not even
allow for a proper initial calibration of the data suit. Thiad a severe influence on the estimated
raw odometry trajectory. We intentionally included thigpexment to show the robustness of
the current approach even in the context of substantialidhahces. Since our assumption of a
Gaussian error in all degrees of freedom is highly violafedgxample, one staircase is rotated
by 45 degrees in the raw odometry data) we still were able to apmabely recover the true
trajectory although with one misaligned door (see Figutd §b)). This door, which is marked
by an arrow in the figure, is wrongly labeled as a new door. Alé@previous experiment, we
used an innovation di.1 m per meter along all axis. The total distance traveled i Ihiild-
ing is approximatelyl .46 km and containd35 door handling events from which our approach
detected1 26. It furthermore resulted in one false alarm in the lower &sftner of the ground
level. The average error of our estimated door locatiofis6ism-+0.40 m. Regarding the step
detection, we were able to deteXitl out of 280 stairs, missing’ stairs up an@ stairs down.
The calculated stair size for the class “stair down” was @araget cm higher than for the class
“stair up”. The raw trajectory is depicted in Figure 6.144ayl Figure 6.15 (a) together with the
raw steps and doors detected by our algorithm. The resuttisug estimated by our approach
is depicted in Figure 6.15 (b). The individual floors plottadtop of the floor plan are shown
in Figure 6.14 (b)-(f). Note that the estimate of the first ficoslightly suboptimal due to the
severe error in the raw data yielding a small drift along:thexis between the different levels.
Since some of the doors were locked, we were not able to elhtewoans. The corresponding
doors appear to be visually not connected to the trajectoRygure 6.14(b)-(f). This originates
from the fact, that the user was not able to pass through tliesgonding doorways, i.e., door
positions are obtained by the hand pose handling the doareabé¢he trajectory is given by the
position of the user’s hip.
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Figure 6.10: Outcome of the first experiment: (a) the raw odometry trajgcestimated by the data suit. The
maximum likelihood estimation of the first floor and the topfloising our approach are shown in (b) and (c), and
aligned to a floor plan in (d) and (e) respectively. A perspeatiew of the data is shown in Figure 6.11. Note that
we omit to draw the labels of the axes in figures (b)-(e) fotdraeadability.
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Figure 6.11: Perspective view of the outcome for the first experiment. fEve odometry trajectory augmented
with the raw detection of stairs and doors is shown in (a) eNloat the elevation in (a) is obtained as the difference
between the altitude of the feet in the raw data given ousdias detected a step event (i.e., the suit provides only
2D data a shown in Figure 6.10 (a). A 3D plot of the correctegettory estimated by our approach is shown
in (b).
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Figure 6.12: The second experiment was performed in a typical Univefsijyding containing several small
seminar rooms as well as two big lecture rooms. The raw odgndeta is depicted in (a), whereas the different
floor levels of our maximum likelihood estimate plotted op tf the floor-plans of the building are shown in
(b)-(d). A perspective view of the data is shown in Figure36.Again, we omit to draw the labels of the axes in
figures (b)-(d) for better readability.
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Figure 6.13: Perspective view of the outcome for the second experimeme.raw odometry trajectory including
the uncorrected location of stairs and doors is depicte@d)n The maximum likelihood estimate of the whole
building using our approach is shown in (b).
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Figure 6.14: The third experiment was performed in a building contairdregibstantial amount of metal structure.

This introduced severe errors in the odometry estimateigeohby the data suit, especially when walking up and
down the staircase between the first and the second floor. alh@dometry is depicted in (a). Our maximum

likelihood solution of the individual floors is shown in ((f)=- The high errors in the raw data led to a wrong data
association in the first floor (a), where the left door markétth the arrow was wrongly labeled asaw door
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Figure 6.15: Perspective view of the outcome for the third experimene fidw odometry trajectory including the
uncorrected location of detected stairs and doors is dapiat(a). Note the two instances of the staircases which
are rotated by approximately 45 and -40 degrees in the rametty trajectory estimated by the suit (a) due to the
high disturbances in the magnetic field. The correspondiagimum likelihood estimate of the whole building
using our approach is shown in (b).
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Figure 6.16: Outcome of the fourth experiment. The raw odometry trajgci® shown in (a) and the corrected
one is visualized in (b). The respective parts of the trajgcdinside the building are shown in Figure 6.17.

We also performed an extensive set of two-dimensional @xgets (i.e., covering only a single
floor level) with different subjects than in the first threggexments.

The fourth experiment was recorded in the same building editst one. This time, the
trajectory was approximately.6 km long including133 door handling events. Our approach
reliably detected25 out of thel33 events with an average error@b m=+0.24 m using the same
parameters as in the first experiment. The raw odometryctajeis shown in Figure 6.16 (a)
and the corrected one is visualized in Figure 6.16 (b). Tkpeement also contains several
loops around the building. The parts of the trajectory whighe recorded inside the building
are shown separately in Figure 6.17 (a) and (b). The lattdudes the result of our approximate
mapping algorithm and therefore also contains the estuoatations of walls.

The fifth experiment contains a trajectory of approximateB/km and was obtained by
walking inside the same university building as in the secexykriment. Again, we intention-
ally walked closely around rows of tables and chairs. Thema#ig disturbances led to a high
pose error, as can be seen in the raw odometry trajectory~(gaee 6.18 (a)). As in the sec-
ond experiment, we used a variance(of m per meter along all dimensions. Although the
initial odometry differs up ta30 m for the same place, we were able to correct it as shown in
Figure 6.18 (b). In this experiment, we detected all 63 daordting events with an error of
0.61 m=£0.17m.

The final experiment was recorded in a typical office envirent For this experiment we
used a dataset recorded by Xsens. The raw odometry trajastshown in Figure 6.19 (a)
and the corrected trajectory using our approach is showngar€& 6.19 (b). The trajectory is
approximately.4 km long and we detectetd out of 27 door handling events by using the same
parameters as in the previous one. However, this experimantecorded by a different team
and we do not have ground truth data of the door locations Babaplan of the building (see
Figure 6.19 (d) or Figure 6.9 (b) on page 130).

The outcome of all experiments together with the parameised are also summarized in
Table 6.2. Note that the 2D experiments were performed wittiee step detection algorithm.
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Figure 6.17: The part of the fourth experiment which was recorded indiggouilding. The raw odometry trajec-
tory is shown in (a) and the corrected one using our appraadglsualized in (b). The latter also shows the result of
our approximate mapping algorithm. Since we segment thectay according to different rooms, we also get the
topological representation of the building. This is viszedl in (c) using three colors in total. The corresponding
floor plan (d) has been colored accordingly for better regitiab
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Figure 6.18: The raw odometry trajectory of the fifth experiment is show(gi). The corrected trajectory including
the approximate locations of walls using our approach igaliged in (b). Again, we also obtain a topological
representation of the environment given our segmentaginoach. The topological representation using three
colors in total is shown in (c). The floor plan of the same bngds shown in (d) and has been colored respectively
for better visualization.
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respectively. The topological representation is showrejra(d the corresponding floor plan is shown in (d).

Experiment | Trajectory | No. of Parameters Building
No. length floors Anew N oz, o? id
1 2.2km 2 0.03 3 0.03 0.1 079
2 2.85km 3 0.03 3 0.1 0.1 101
3 1.46 km 5 0.03 3 0.1 0.1 106
4 1.6 km 1 0.03 3 0.03 0.1 079
5 1.3km 1 0.03 3 0.1 0.1 101
6 0.4km 1 0.03 3 0.1 0.1 Xsens
Experiment Door detection Step detection | Error of estimated = Subject
No. Recall rate FP Recall rate | FP door locations id
1 0.968 1 0.914 1 0.31 m=*0.17m A
2 0.983 1 0.869 0 1m+041m A
3 0.933 1 0.968 0 0.67m+0.40 m A
4 0.94 0 n/a n/a 0.5m=+0.24m B
5 1 0 n/a n/a 0.61 m+0.17m B
6 0.889 0 n/a n/a n/a C

Table 6.2: Summary of all experiments. The recall rate is calculatetti@satio of true positives versus the actual

number of events. Here, FP is short for false positives arglsfiort for N-Scan-back.
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Figure 6.20: Outcome of our approximate and topological mapping algorifor the second experiment. We
omit the plotting of the rooms extends, as the perspects wf the 3D structure in combination with outer walls
would render the image black. The floor plans on the right siahel show the individual floors of the building (see
also Figure 6.12 and Figure 6.13) and are colored with reéspélce outcome of our approach for better visibility.

6.7.2 Room Segmentation and Approximate Mapping

In this section we show our results of our room segmentatiah approximate mapping al-
gorithm for floors of different buildings. Figures 6.17, 8,Jand 6.19 show typical outcomes
of our approach and the building’s floor plans respectiv@lgte that our mapping technique
segments the trajectory into different rooms. We theretane calculate both, a geometrical
and a topological map. The topological maps colored witlpegesto different rooms (using
three different colors in total) are shown in (c) of Figures/® 6.18, and 6.19. The correspond-
ing floor plans have been manually colored and are shown inf(the same figure. As can
be seen, there exists a high visual correlation betweendtimated floor plans and the real
ones. Errors mainly arise from rotational errors as can ba gethe bottom left part of Fig-
ure 6.18 (b)+(c). These rotational errors, however, candoected by including an additional
loop around the building from the outside or inside as dernatesd in Figure 6.12. The walls
within the map of Figure 6.18 (b)+(c) are present since gheeixnents were performed using
a maximum distance of = 1.5 m as described in Section 6.5. Figure 6.20 shows the outcome
of our segmentation approach for the second experiment, ler omit to plot the walls since
the perspective view of the 3D structure in combination ik outer walls would render the
figure completely black. However, the outcome of our segatent algorithm also provides
the topological structure of the building which accuratedgembles the true layout as can be
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seen by comparing it with the corresponding floor plans ofstrae floor. These experimental
results demonstrate, that our approach is robust and capdbedin different environments
providing accurate results.

6.8 Related Work

The problem of tracking the correct data association [75yel as human indoor navigation
and localization has recently become an active research f@8, 133, 99, 35]. A number of
different sensors have been employed and different kindiscafization techniques have been
used. One of the first approaches in this area has been ptbpgdeee and Mase [96], who
employ wearable accelerometers and other sensors, i.gital dompass and a velocity sen-
sor, to recognize when humans perform specific activitiesdrange their locations in indoor
environments. They integrate the accelerometer data owerdnd estimate the position of
humans in a known environment based on higher level deecsiguch astanding 2 steps
north, or 40 steps easttc. The field of human indoor navigation and localizatiothierefore
closely related to activity recognition using acceleroenefata. Bao and Intille, [14] as well as
Raviet al. [126] have presented approaches to predict certain low éetities like walking,
standing running sit-ups and others using features from raw accelerometer data &ad-a
ety of different learning algorithms. However, they do notgoy this information for indoor
positioning. Schindleet al. [133] utilize an accelerometer together with an infrareakpmity
sensor mounted on a pair of headphones to detect when a hampassing through a doorway.
In this work, the authors are able to construct topologicaps) where rooms are represented
by single nodes and edges represent the path in steps betlweemays. For building these
maps and for detecting loop closures, the human user haslitate by gesture which door
was passed, i.e., giving each door a unique identifier viarthiared proximity sensor. They
furthermore apply a Bayesian filtering scheme to localizepgirson within the resulting map.

In the last years, low-cost inertial measurements unitdlildkased on MEMS have become
available and many researchers use such sensors for padéstalization, either alone or in
combination with other sensors. Foxéhal. [51] incorporate a zero velocity update allowing to
estimate the users trajectory using an extended Kalman Bitgensteiret al. [20] use a highly
precise IMU also combined with zero velocity updates anéiobdn accurate dead reckoning
odometry. Woodmaret al. [163, 164] as well as Wangt al. [161] include additional infor-
mation using WiFi. Both research groups employ a particlerfiid track possible trajectories
and calculate the weights of the particles based on the WjRakstrength. Fischest al. [48]
discuss the possibility of using ultrasound sensors toaedthe error introduced by the MEMS
sensors and present simulation results. Fetlial. [46] utilize a neural network to estimate the
step size using a single IMU and thus estimate the odometriey@o al. [37] use wavelets
to detect steps using gyroscopes only. In the work of ‘&atal. [154], a prototype for pedes-
trian dead-reckoning and their general concept of sensworius discussed. The HeadSLAM
approach by Cinaz and Kenn [35] employs a laser scanner tgetth an IMU mounted on a
helmet. They use the IMU sensor to project the laser scaosihibrizontal plane in a global
coordinate system and employ a variant of GMapping [61] fapping. In particular, they
incorporate a simplified motion model with two modes. Whertbasfirst mode corresponds
to the activity walking and assumes constant velocity, #@ed mode represents the situation
that the person is standing still and assumes zero speedveXvi@wv over existing techniques
can also be found in [47].
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6.9 Conclusion

We presented a novel approach to accurately estimate theagfetories of humans based on
data gathered with a motion capture suit. Our approachastrao different activities from the
motion data, namely door handling and stair climbing evewts consider the trajectory of the
person and the height estimates of our step detection #Higogs motion constraints. The door
handling events detected using specific motion templatessed as landmarks within a graph-
based SLAM approach. To cope with the high data associatioartainty, we employ a multi-
hypothesis tracking approach. Additionally, our method caeate approximate geometrical as
well as topological maps of the environment based on thenastid trajectory and activities.
Our system has been implemented and successfully testezhbdata recorded with different
subjects in several buildings on a university campus asageih a typical office environment.
The experimental results demonstrate that our approachlésta robustly keep track of the
true data association and accurately estimates the wayeetken by the person. Furthermore,
the resulting geometrical as well as topological maps ately resemble the corresponding
environments.
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Chapter 7

Conclusions and Outlook

A fundamental prerequisite for a sensor system, whethemitdunted on a robot or integrated
into the garment of the human, is knowledge about the custete. In state-of-the-art robotics,
the current state includes also the information about threentilocation. This information
allows robots to perform navigation tasks autonomouslyeregal sensor systems (not nec-
essarily mounted on a robot) to assist humans in their nmsskbowever, robots as well as
other non-robotic embedded sensor systems (i.e., basdér @lata suit) are only envisioned as
useful when the overall system is robust, small, and is ablgperate autonomously over an
extended period of time without the need of human interfegerspecially, flying robots must
be equipped with a high level of autonomy. Here, the comptexfithe robot makes is hard to
remotely steer it, in particular in confined indoor locasamhere a good quality of a radio link
cannot be guaranteed. Additionally, given the limited pagl and high time constraints, this
imposes several challenges for the underlying algorithms.

To obtain a estimate of the current state, it is inevitablkeitioer use an existing map of the envi-
ronment or to build a map during the mission of the agent, ficdot or human). Especially in
indoor environments, a map of the building is not (readilygikable in most of the cases. Since
the map has to be build on-line, efficient mapping techniguesieeded in order to correct for
sensor noise. Simultaneous localization and mapping (SL&Ms to estimate the current state
of the agent and simultaneously build a map of the environmésing a graph-based represen-
tation allows us to divide such systems into two parts, ngirtred front-end and the back-end.
The main gaols of the front-end SLAM system include detemgjrthe incremental motion
and detecting loop closures. In other words, the front-ealdutates the nodes and edges of
a graph. Optimizing techniques, namely, algorithms egtirgaghe configuration of the nodes
which minimizes the overall error are called the back-end 8. AM system, respectively.

In this thesis, we developed an efficient graph-based opditioin technique which allows a
system to efficiently correct for odometry errors after detgy loop closures. We have demon-
strated that this back-end system calculates a minimuor-eonfiguration orders of magnitude
faster than other state-of-the-art systems without any ilesaccuracy. We achieved this by
introducing a novel tree parametrization which divides dkerall optimization problem into
smaller sub-problems. We furthermore presented an extensiour approach which allows
for efficient graph optimization in 3D. We also presented ppraach for node reduction. This
yields an optimization technique with an computational ptaxity being dependent on the
space the robot explored and not the time the robot spentienkironment. Our proposed
algorithm is a general framework which can be used with ataof SLAM front-ends.
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Autonomous flying robots are envisioned as one of most inapbrobotic systems during these
days. Such robots can assist humans in search and rescuensss well be used as a remote
eye where wheeled robots cannot operate. We developed gatiani system for autonomous
indoor flying using a quadrotor robot. Using our graph-basgiimization back-end, we built
a SLAM front-end which meets the demanding requirementsgimdccuracy and low compu-
tational complexity which is needed for such an embeddegsysWe furthermore developed
techniques which allows the flying robot to autonomouslychedesired locations and avoid
obstacles entering the robot’s field of view. We have showamiextensive set of experiments,
that our developed platform is able to robustly operateracstired indoor environments and
build accurate maps (2D as well as 3D) of the area the robqtasading in.

However, flying platforms are only one possibility on how &sigt humans. Especially in the
context of search and rescue missions, it is envisionedthigaknowledge about the pose of
the rescue team (e.g., firefighter) will help to save livesic8iscenarios where such teams are
operating in, prevent the usage of light dependent sengersdameras or laser scanners (e.g.,
due to smoke) we developed a mapping technique based on hactiaity and motion only.
Here, we used human activities, like opening or closing sioand treated them as landmarks
in a feature-based SLAM system. Again, our graph-baseanigdtion was used as the back-
end of the overall system. We have demonstrated in sevepariexents, that we are able to
accurately recover the 3D trajectory of the agent and thatamebuild approximate geometrical
as well as topological maps of the environment which resertit# floor plans of the building
with a remarkable accuracy. The detected activities arsiy@s.e., the agent does not need to
learn specific gestures of commands and can concentratelhonshis mission. Therefore, we
believe that our proposed algorithm will be helpful duriregly life of rescue workers.

In summary, all developed algorithms were extensiveletkssing real world data. We demon-
strated that our graph optimization technique is a robudtfast error minimization algorithm
intended to be used as the SLAM back-end. We furthermorelalg»® a navigation system
enabling fully autonomous indoor flying using a quadrotdra® Finally, we developed an effi-
cient and robust approach for simultaneously localize adruamd map the indoor environment
employing the motions of the human as the only sensory inpeatbelieve, that the presented
techniques will allow to build systems that can be used imyalay work improving the work
quality of humans and that are helpful for a variety of apians, including search and rescue,
potentially helping saving lives.

In spite of our promising results presented in this thessdlare many possibilities on how to
extend the presented solutions. Within our quadrotor radidg system, we use a laser scanner
for perceiving the environment only. One possibility woblel to add additional sensors, like
cameras or radar and fuse the overall information. This dvamprove the robustness of the
vehicle and extend it's autonomous capabilities to complex highly cluttered environments.
Another possibility is to learn the dynamic model of the ftyirobot. This would allow the
guadrotor to perform impressive maneuvers using on-bcamdas only, which currently are
only possible with an external, fast, and highly accurateera tracking device. Another pos-
sibility is to extend the quadrotor’s operational enviramhfrom air to air and water. Although
diving with a quadrotor would be restricted to a few meterly @nopens a highly interesting
research question. How should a navigation system be dssignd which sensors must be
used in order to allow robust and fast autonomous flights disaseinderwater missions?



151

Our approach to map indoor environments based on humaityoses multi-hypothesis track-
ing to deal with the high data association. Given any N-dzark with a finite N, a human could
walk a sufficiently long trajectory, which would lead to a sptimal data association. Here, one
could further investigate this problem in order to find a soluwhich is more robust than the
multi hypothesis tracker and still computational feasil@early, one could imagine including
more activities. One possibility would be to extend the dedativities from passive to active
ones. In other words, the subject would explicitly performaativity, like touching a wall, in
order to improve the results. Although motion templatesshaeen shown to be a good frame-
work to learn door handling events they are computationadly intensive. Thus the question
arises if there exists another technique for learning matiatterns which takes much less cal-
culation time. Another possibility to extend the currentkis the usage of more raw data from
the inertial measurement units, especially earth-magfietd measurements. We believe that
this information could be employed as landmarks, improvirggraw odometry estimate.

Finally, one could extend the work by combining the navigiatsystem of the quadrotor with
the map estimate of the subject. A possible scenario woulddidoth agents are exploring the
same environment, or that the quadrotor is estimating a rhieduilding by flying outdoors
around it whereas the human is building an approximate magors. An interesting question
here arises for the path planning. In more detail, one caddiess the question on how to guide
the quadrotor to maximize the probability that the flyingabtvould perceive the human with
his sensors, e.g., through a window. This would generat#iawal loop closures and improve
the overall map build by the two agents.
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